ﻻ يوجد ملخص باللغة العربية
Impedance mismatch between free space and absorptive materials is a fundamental issue plaguing the pursue of high-efficiency light absorption. In this work, we design and numerically demonstrate a type of non-resonant impedance-matched optical metasurfaces exhibiting ultra-broadband reflectionless absorption based on anomalous Brewster effect, which are donated as optical Brewster metasurfaces here. Interestingly, such Brewster metasurfaces exhibit a unique type of extreme angular-asymmetry: a transition between perfect transparency and perfect absorption appears when the sign of the incident angle is changed. Such a remarkable phenomenon originates in the coexistence of traditional and anomalous Brewster effects. Guidelines of material selection based on an effective-medium description and strategies such as the integration of a metal back-reflector or folded metasurfaces are proposed to improve the absorption performance. Finally, a gradient optical Brewster metasurface exhibiting ultra-broadband and near-omnidirectional reflectionless absorption is demonstrated. Such high-efficiency asymmetric optical metasurfaces may find applications in optoelectrical and thermal devices like photodetectors, thermal emitters and photovoltaics.
The Brewsters law predicts zero reflection of p-polarization on a dielectric surface at a particular angle. However, when loss is introduced into the permittivity of the dielectric, the Brewster condition breaks down and reflection unavoidably appear
Energy of propagating electromagnetic waves can be fully absorbed in a thin lossy layer, but only in a narrow frequency band, as follows from the causality principle. On the other hand, it appears that there are no fundamental limitations on broadban
For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens metaatoms are typically used to eliminate reflection and achieve a high transmission power efficiency together with a wide transmission phase coverage. W
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded qo{space} for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states
We present an ultra broadband thin-film infrared absorber made of saw-toothed anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence is supported in a wide range of frequencies, where the full absorption width at half maximum i