ﻻ يوجد ملخص باللغة العربية
The Brewsters law predicts zero reflection of p-polarization on a dielectric surface at a particular angle. However, when loss is introduced into the permittivity of the dielectric, the Brewster condition breaks down and reflection unavoidably appears. In this work, we found an exception to this long-standing dilemma by creating a class of nonmagnetic anisotropic metamaterials, where an anomalous Brewster effects with independently tunable absorption and refraction emerges. This loss-independent Brewster effect is bestowed by the extra degrees of freedoms introduced by anisotropy and strictly protected by the reciprocity principle. The bandwidth can cover an extremely wide spectrum from dc to optical frequencies. Two examples of reflectionless Brewster absorbers with different Brewster angles are both demonstrated to achieve large absorbance in a wide spectrum via microwave experiments. Our work extends the scope of Brewster effect to the horizon of nonmagnetic absorptive materials, which promises an unprecedented wide bandwidth for reflectionless absorption with high efficiency.
Impedance mismatch between free space and absorptive materials is a fundamental issue plaguing the pursue of high-efficiency light absorption. In this work, we design and numerically demonstrate a type of non-resonant impedance-matched optical metasu
A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-f
Designing broadband metamaterial perfect absorbers is challenging due to the intrinsically narrow bandwidth of surface plasmon resonances. Here, the paper reports an ultra-broadband metamaterial absorber by using space filling Gosper curve. The optim
The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can a
Non-reciprocity of signal transmission enhances capacity of communication channels and protects transmission quality against possible signal instabilities, thus becoming an important component ensuring coherent information processing. However, non-re