ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-broadband reflectionless Brewster absorber protected by reciprocity

394   0   0.0 ( 0 )
 نشر من قبل Jie Luo Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Brewsters law predicts zero reflection of p-polarization on a dielectric surface at a particular angle. However, when loss is introduced into the permittivity of the dielectric, the Brewster condition breaks down and reflection unavoidably appears. In this work, we found an exception to this long-standing dilemma by creating a class of nonmagnetic anisotropic metamaterials, where an anomalous Brewster effects with independently tunable absorption and refraction emerges. This loss-independent Brewster effect is bestowed by the extra degrees of freedoms introduced by anisotropy and strictly protected by the reciprocity principle. The bandwidth can cover an extremely wide spectrum from dc to optical frequencies. Two examples of reflectionless Brewster absorbers with different Brewster angles are both demonstrated to achieve large absorbance in a wide spectrum via microwave experiments. Our work extends the scope of Brewster effect to the horizon of nonmagnetic absorptive materials, which promises an unprecedented wide bandwidth for reflectionless absorption with high efficiency.



قيم البحث

اقرأ أيضاً

87 - Huiying Fan , Jensen Li , Yun Lai 2021
Impedance mismatch between free space and absorptive materials is a fundamental issue plaguing the pursue of high-efficiency light absorption. In this work, we design and numerically demonstrate a type of non-resonant impedance-matched optical metasu rfaces exhibiting ultra-broadband reflectionless absorption based on anomalous Brewster effect, which are donated as optical Brewster metasurfaces here. Interestingly, such Brewster metasurfaces exhibit a unique type of extreme angular-asymmetry: a transition between perfect transparency and perfect absorption appears when the sign of the incident angle is changed. Such a remarkable phenomenon originates in the coexistence of traditional and anomalous Brewster effects. Guidelines of material selection based on an effective-medium description and strategies such as the integration of a metal back-reflector or folded metasurfaces are proposed to improve the absorption performance. Finally, a gradient optical Brewster metasurface exhibiting ultra-broadband and near-omnidirectional reflectionless absorption is demonstrated. Such high-efficiency asymmetric optical metasurfaces may find applications in optoelectrical and thermal devices like photodetectors, thermal emitters and photovoltaics.
A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-f requencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7GHz, and the absorption is kept large when the incident angle is smaller than 60 degrees. The experimental results agree well with the numerical simulation.
79 - Jihua Zou , Peng Yu , Wenhao Wang 2019
Designing broadband metamaterial perfect absorbers is challenging due to the intrinsically narrow bandwidth of surface plasmon resonances. Here, the paper reports an ultra-broadband metamaterial absorber by using space filling Gosper curve. The optim ized result shows an average absorptivity of 95.78% from 2.64 to 9.79 {mu}m across the entire mid-infrared region. Meanwhile, the absorber shows insensitivity to the polarization angle and the incident angle of the incident light. The underlying physical principles, used in our broadband absorber, involve a fractal geometry with multiple scales and a dissipative plasmonic crystal. The broadband perfect absorption can be attributed to multiple electric resonances at different wavelengths supported by a few segments in the defined Gosper curve.
276 - Yinyue Lin , Yanxia Cui , Fei Ding 2016
The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can a lso support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we can get rid of this dip if the absorption band edge at long wavelength range is reduced down to 5 micrometer. The parametrical study reflects that the absorption bandwidth is mainly determined by the filling ratio of tungsten as well as the bottom diameter of the nano-cones and the interaction between neighboring nano-cones is quite weak. Our proposal has some potential applications in the areas of solar energy harvesting and thermal emitters.
Non-reciprocity of signal transmission enhances capacity of communication channels and protects transmission quality against possible signal instabilities, thus becoming an important component ensuring coherent information processing. However, non-re ciprocal transmission requires breaking time-reversal symmetry (TRS) which poses challenges of both practical and fundamental character hindering the progress. Here we report a new scheme for achieving broadband non-reciprocity using a specially engineered hybrid microwave cavity. The TRS breaking is realized via strong coherent coupling between a selected chiral mode in the microwave cavity and a single collective spin excitation (magnon) in a ferromagnetic yttrium iron garnet (YIG) sphere. The non-reciprocity in transmission is observed spanning nearly a 0.5 GHz frequency band, which outperforms by two orders of magnitude the previously achieved bandwidths. Our findings open new directions for robust coherent information processing in a broad range of systems in both classical and quantum regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا