ﻻ يوجد ملخص باللغة العربية
We generalize standard credal set models for imprecise probabilities to include higher order credal sets -- confidences about confidences. In doing so, we specify how an agents higher order confidences (credal sets) update upon observing an event. Our model begins to address standard issues with imprecise probability models, like Dilation and Belief Inertia. We conjecture that when higher order credal sets contain all possible probability functions, then in the limiting case the highest order confidences converge to form a uniform distribution over the first order credal set, where we define uniformity in terms of the statistical distance metric (total variation distance). Finite simulation supports the conjecture. We further suggest that this convergence presents the total-variation-uniform distribution as a natural, privileged prior for statistical hypothesis testing.
We study the problem of distributional approximations to high-dimensional non-degenerate $U$-statistics with random kernels of diverging orders. Infinite-order $U$-statistics (IOUS) are a useful tool for constructing simultaneous prediction intervals
Selection of important covariates and to drop the unimportant ones from a high-dimensional regression model is a long standing problem and hence have received lots of attention in the last two decades. After selecting the correct model, it is also im
The test of homogeneity for normal mixtures has been conducted in diverse research areas, but constructing a theory of the test of homogeneity is challenging because the parameter set for the null hypothesis corresponds to singular points in the para
We derive adjusted signed likelihood ratio statistics for a general class of extreme value regression models. The adjustments reduce the error in the standard normal approximation to the distribution of the signed likelihood ratio statistic. We use M
The sequential multiple testing problem is considered under two generalized error metrics. Under the first one, the probability of at least $k$ mistakes, of any kind, is controlled. Under the second, the probabilities of at least $k_1$ false positive