ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher Order Imprecise Probabilities and Statistical Testing

70   0   0.0 ( 0 )
 نشر من قبل Tim Weninger PhD
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize standard credal set models for imprecise probabilities to include higher order credal sets -- confidences about confidences. In doing so, we specify how an agents higher order confidences (credal sets) update upon observing an event. Our model begins to address standard issues with imprecise probability models, like Dilation and Belief Inertia. We conjecture that when higher order credal sets contain all possible probability functions, then in the limiting case the highest order confidences converge to form a uniform distribution over the first order credal set, where we define uniformity in terms of the statistical distance metric (total variation distance). Finite simulation supports the conjecture. We further suggest that this convergence presents the total-variation-uniform distribution as a natural, privileged prior for statistical hypothesis testing.



قيم البحث

اقرأ أيضاً

We study the problem of distributional approximations to high-dimensional non-degenerate $U$-statistics with random kernels of diverging orders. Infinite-order $U$-statistics (IOUS) are a useful tool for constructing simultaneous prediction intervals that quantify the uncertainty of ensemble methods such as subbagging and random forests. A major obstacle in using the IOUS is their computational intractability when the sample size and/or order are large. In this article, we derive non-asymptotic Gaussian approximation error bounds for an incomplete version of the IOUS with a random kernel. We also study data-driven inferential methods for the incomplete IOUS via bootstraps and develop their statistical and computational guarantees.
Selection of important covariates and to drop the unimportant ones from a high-dimensional regression model is a long standing problem and hence have received lots of attention in the last two decades. After selecting the correct model, it is also im portant to properly estimate the existing parameters corresponding to important covariates. In this spirit, Fan and Li (2001) proposed Oracle property as a desired feature of a variable selection method. Oracle property has two parts; one is the variable selection consistency (VSC) and the other one is the asymptotic normality. Keeping VSC fixed and making the other part stronger, Fan and Lv (2008) introduced the strong oracle property. In this paper, we consider different penalized regression techniques which are VSC and classify those based on oracle and strong oracle property. We show that both the residual and the perturbation bootstrap methods are second order correct for any penalized estimator irrespective of its class. Most interesting of all is the Lasso, introduced by Tibshirani (1996). Although Lasso is VSC, it is not asymptotically normal and hence fails to satisfy the oracle property.
The test of homogeneity for normal mixtures has been conducted in diverse research areas, but constructing a theory of the test of homogeneity is challenging because the parameter set for the null hypothesis corresponds to singular points in the para meter space. In this paper, we examine this problem from a new perspective and offer a theory of hypothesis testing for homogeneity based on a variational Bayes framework. In the conventional theory, the constant order term of the free energy has remained unknown, however, we clarify its asymptotic behavior because it is necessary for constructing a hypothesis test. Numerical experiments shows the validity of our theoretical results.
We derive adjusted signed likelihood ratio statistics for a general class of extreme value regression models. The adjustments reduce the error in the standard normal approximation to the distribution of the signed likelihood ratio statistic. We use M onte Carlo simulations to compare the finite-sample performance of the different tests. Our simulations suggest that the signed likelihood ratio test tends to be liberal when the sample size is not large, and that the adjustments are effective in shrinking the size distortion. Two real data applications are presented and discussed.
The sequential multiple testing problem is considered under two generalized error metrics. Under the first one, the probability of at least $k$ mistakes, of any kind, is controlled. Under the second, the probabilities of at least $k_1$ false positive s and at least $k_2$ false negatives are simultaneously controlled. For each formulation, the optimal expected sample size is characterized, to a first-order asymptotic approximation as the error probabilities go to 0, and a novel multiple testing procedure is proposed and shown to be asymptotically efficient under every signal configuration. These results are established when the data streams for the various hypotheses are independent and each local log-likelihood ratio statistic satisfies a certain Strong Law of Large Numbers. In the special case of i.i.d. observations in each stream, the gains of the proposed sequential procedures over fixed-sample size schemes are quantified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا