ﻻ يوجد ملخص باللغة العربية
Selection of important covariates and to drop the unimportant ones from a high-dimensional regression model is a long standing problem and hence have received lots of attention in the last two decades. After selecting the correct model, it is also important to properly estimate the existing parameters corresponding to important covariates. In this spirit, Fan and Li (2001) proposed Oracle property as a desired feature of a variable selection method. Oracle property has two parts; one is the variable selection consistency (VSC) and the other one is the asymptotic normality. Keeping VSC fixed and making the other part stronger, Fan and Lv (2008) introduced the strong oracle property. In this paper, we consider different penalized regression techniques which are VSC and classify those based on oracle and strong oracle property. We show that both the residual and the perturbation bootstrap methods are second order correct for any penalized estimator irrespective of its class. Most interesting of all is the Lasso, introduced by Tibshirani (1996). Although Lasso is VSC, it is not asymptotically normal and hence fails to satisfy the oracle property.
In the fields of clinical trials, biomedical surveys, marketing, banking, with dichotomous response variable, the logistic regression is considered as an alternative convenient approach to linear regression. In this paper, we develop a novel bootstra
In this paper, we develop uniform inference methods for the conditional mode based on quantile regression. Specifically, we propose to estimate the conditional mode by minimizing the derivative of the estimated conditional quantile function defined b
From an optimizers perspective, achieving the global optimum for a general nonconvex problem is often provably NP-hard using the classical worst-case analysis. In the case of Coxs proportional hazards model, by taking its statistical model structures
We generalize standard credal set models for imprecise probabilities to include higher order credal sets -- confidences about confidences. In doing so, we specify how an agents higher order confidences (credal sets) update upon observing an event. Ou
Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is