ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of Synthetic Multi-Resolution Time Series Load Data

128   0   0.0 ( 0 )
 نشر من قبل Andrea Pinceti
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The availability of large datasets is crucial for the development of new power system applications and tools; unfortunately, very few are publicly and freely available. We designed an end-to-end generative framework for the creation of synthetic bus-level time-series load data for transmission networks. The model is trained on a real dataset of over 70 Terabytes of synchrophasor measurements spanning multiple years. Leveraging a combination of principal component analysis and conditional generative adversarial network models, the scheme we developed allows for the generation of data at varying sampling rates (up to a maximum of 30 samples per second) and ranging in length from seconds to years. The generative models are tested extensively to verify that they correctly capture the diverse characteristics of real loads. Finally, we develop an open-source tool called LoadGAN which gives researchers access to the fully trained generative models via a graphical interface.



قيم البحث

اقرأ أيضاً

A framework for the generation of synthetic time-series transmission-level load data is presented. Conditional generative adversarial networks are used to learn the patterns of a real dataset of hourly-sampled week-long load profiles and generate uni que synthetic profiles on demand, based on the season and type of load required. Extensive testing of the generative model is performed to verify that the synthetic data fully captures the characteristics of real loads and that it can be used for downstream power system and/or machine learning applications.
Synthetic medical data which preserves privacy while maintaining utility can be used as an alternative to real medical data, which has privacy costs and resource constraints associated with it. At present, most models focus on generating cross-sectio nal health data which is not necessarily representative of real data. In reality, medical data is longitudinal in nature, with a single patient having multiple health events, non-uniformly distributed throughout their lifetime. These events are influenced by patient covariates such as comorbidities, age group, gender etc. as well as external temporal effects (e.g. flu season). While there exist seminal methods to model time series data, it becomes increasingly challenging to extend these methods to medical event time series data. Due to the complexity of the real data, in which each patient visit is an event, we transform the data by using summary statistics to characterize the events for a fixed set of time intervals, to facilitate analysis and interpretability. We then train a generative adversarial network to generate synthetic data. We demonstrate this approach by generating human sleep patterns, from a publicly available dataset. We empirically evaluate the generated data and show close univariate resemblance between synthetic and real data. However, we also demonstrate how stratification by covariates is required to gain a deeper understanding of synthetic data quality.
The empirical mode decomposition (EMD) method and its variants have been extensively employed in the load and renewable forecasting literature. Using this multiresolution decomposition, time series (TS) related to the historical load and renewable ge neration are decomposed into several intrinsic mode functions (IMFs), which are less non-stationary and non-linear. As such, the prediction of the components can theoretically be carried out with notably higher precision. The EMD method is prone to several issues, including modal aliasing and boundary effect problems, but the TS decomposition-based load and renewable generation forecasting literature primarily focuses on comparing the performance of different decomposition approaches from the forecast accuracy standpoint; as a result, these problems have rarely been scrutinized. Underestimating these issues can lead to poor performance of the forecast model in real-time applications. This paper examines these issues and their importance in the model development stage. Using real-world data, EMD-based models are presented, and the impact of the boundary effect is illustrated.
Load modeling is difficult due to its uncertain and time-varying properties. Through the recently proposed ambient signals load modeling approach, these properties can be more frequently tracked. However, the large dataset of load modeling results be comes a new problem. In this paper, a hierarchical temporal and spatial clustering method of load models is proposed, after which the large size load model dataset can be represented by several representative load models (RLMs). In the temporal clustering stage, the RLMs of one load bus are picked up through clustering to represent all the load models of the load bus at different time. In the spatial clustering stage, the RLMs of all the load buses form a new set and the RLMs of the system are picked up through spatial clustering. In this way, the large sets of load models are represented by a small number of RLMs, through which the storage space of the load models is significantly reduced. The validation results in IEEE 39 bus system have shown that the simulation accuracy can still be maintained after replacing the load models with the RLMs. In this way, the effectiveness of the proposed hierarchical clustering framework is validated.
In order to deal with issues caused by the increasing penetration of renewable resources in power systems, this paper proposes a novel distributed frequency control algorithm for each generating unit and controllable load in a transmission network to replace the conventional automatic generation control (AGC). The targets of the proposed control algorithm are twofold. First, it is to restore the nominal frequency and scheduled net inter-area power exchanges after an active power mismatch between generation and demand. Second, it is to optimally coordinate the active powers of all controllable units in a distributed manner. The designed controller only relies on local information, computation, and peer-to-peer communication between cyber-connected buses, and it is also robust against uncertain system parameters. Asymptotic stability of the closed-loop system under the designed algorithm is analysed by using a nonlinear structure-preserving model including the first-order turbine-governor dynamics. Finally, case studies validate the effectiveness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا