ﻻ يوجد ملخص باللغة العربية
A framework for the generation of synthetic time-series transmission-level load data is presented. Conditional generative adversarial networks are used to learn the patterns of a real dataset of hourly-sampled week-long load profiles and generate unique synthetic profiles on demand, based on the season and type of load required. Extensive testing of the generative model is performed to verify that the synthetic data fully captures the characteristics of real loads and that it can be used for downstream power system and/or machine learning applications.
The availability of large datasets is crucial for the development of new power system applications and tools; unfortunately, very few are publicly and freely available. We designed an end-to-end generative framework for the creation of synthetic bus-
Real active distribution networks with associated smart meter (SM) data are critical for power researchers. However, it is practically difficult for researchers to obtain such comprehensive datasets from utilities due to privacy concerns. To bridge t
Several deep learning methods have been proposed for completing partial data from shape acquisition setups, i.e., filling the regions that were missing in the shape. These methods, however, only complete the partial shape with a single output, ignori
When trained on multimodal image datasets, normal Generative Adversarial Networks (GANs) are usually outperformed by class-conditional GANs and ensemble GANs, but conditional GANs is restricted to labeled datasets and ensemble GANs lack efficiency. W
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples ($x$) conditioned on both latent variables ($z$) and known auxiliary information ($c$). We propose the Bidirectional cGAN (BiCoGAN), which effecti