ﻻ يوجد ملخص باللغة العربية
We present a test platform for the Athena X-IFU detection chain, which will serve as the first demonstration of the representative end-to-end detection and readout chain for the X-IFU, using prototypes of the future flight electronics and currently available subsystems. This test bench, housed in a commercial two-stage ADR cryostat, includes a focal plane array placed at the 50 mK cold stage of the ADR with a kilopixel array of transition-edge sensor microcalorimeter spectrometers and associated cold readout electronics. Prototype room temperature electronics for the X-IFU provide the readout, and will evolve over time to become more representative of the X-IFU mission baseline. The test bench yields critical feedback on subsystem designs and interfaces, in particular the warm readout electronics, and will provide an in-house detection system for continued testing and development of the warm readout electronics and for the validation of X-ray calibration sources. In this paper, we describe the test bench subsystems and design, characterization of the cryostat, and current status of the project.
Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large
The ATHENA X-ray Observatory is the second large-class mission in the ESA Cosmic Vision 2015-2025 science programme. One of the two on-board instruments is the X-IFU, an imaging spectrometer based on a large array of TES microcalorimeters. To reduce
The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5 arc second pixels over a field of view of 5 arc
The Athena+ mission concept is designed to implement the Hot and Energetic Universe science theme submitted to the European Space Agency in response to the call for White Papers for the definition of the L2 and L3 missions of its science program. The
The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, currently under preparation by a world-wide consortium. The FlashCam group is preparing a photomultiplier-based camera for the Medium