ﻻ يوجد ملخص باللغة العربية
Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.
We present a test platform for the Athena X-IFU detection chain, which will serve as the first demonstration of the representative end-to-end detection and readout chain for the X-IFU, using prototypes of the future flight electronics and currently a
Frequency-domain multiplexing (fMux) is an established technique for the readout of large arrays of transition edge sensor (TES) bolometers. Each TES in a multiplexing module has a unique AC voltage bias that is selected by a resonant filter. This sc
Cosmic microwave background (CMB) measurements are fundamentally limited by photon statistics. Therefore, ground-based CMB observatories have been increasing the number of detectors that are simultaneously observing the sky. Thanks to the advent of m
We are developing X-ray microcalorimeters as a backup option for the baseline detectors in the X-IFU instrument on board the ATHENA space mission led by ESA and to be launched in the early 2030s.5$times$5 mixed arrays with TiAu transition-edge sensor
The ATHENA X-ray Observatory is the second large-class mission in the ESA Cosmic Vision 2015-2025 science programme. One of the two on-board instruments is the X-IFU, an imaging spectrometer based on a large array of TES microcalorimeters. To reduce