ﻻ يوجد ملخص باللغة العربية
A formula is presented for designing zero-determinant(ZD) strategies of general finite games, which have $n$ players and players can have different numbers of strategies. To this end, using semi-tensor product (STP) of matrices, the profile evolutionary equation for repeated finite games is obtained. Starting from it, the ZD strategies are developed for general finite games, based on the same technique proposed by Press and Dyson cite{pre12}. A formula is obtain to design ZD strategies for any player directly, ignoring the original ZD design process. Necessary and sufficient condition is obtained to ensure the effectiveness of the designed ZD strategies. As a consequence, it is also clear that player $i$ is able to unilaterally design $|S_i|-1$ dominating linear relations about the expected payoffs of all players. Finally, the fictitious opponent player is proposed for networked evolutionary networks (NEGs). Using it, the ZD-strategies are applied to NEGs. It is surprising that an individual in a network may use ZD strategies to conflict the whole rest network.
Recently, Press and Dyson have proposed a new class of probabilistic and conditional strategies for the two-player iterated Prisoners Dilemma, so-called zero-determinant strategies. A player adopting zero-determinant strategies is able to pin the exp
Repeated game theory has been one of the most prevailing tools for understanding the long-run relationships, which are footstones in building human society. Recent works have revealed a new set of zero-determinant (ZD) strategies, which is an importa
Social dilemmas exist in various fields and give rise to the so-called free-riding problem, leading to collective fiascos. The difficulty of tracking individual behaviors makes egoistic incentives in large-scale systems a challenging task. However, t
Since Press and Dysons ingenious discovery of ZD (zero-determinant) strategy in the repeated Prisoners Dilemma game, several studies have confirmed the existence of ZD strategy in repeated multiplayer social dilemmas. However, few researches study th
We focus on the problem of finding an optimal strategy for a team of two players that faces an opponent in an imperfect-information zero-sum extensive-form game. Team members are not allowed to communicate during play but can coordinate before the ga