ﻻ يوجد ملخص باللغة العربية
Given a pair of graphs $textbf{A}$ and $textbf{B}$, the problems of deciding whether there exists either a homomorphism or an isomorphism from $textbf{A}$ to $textbf{B}$ have received a lot of attention. While graph homomorphism is known to be NP-complete, the complexity of the graph isomorphism problem is not fully understood. A well-known combinatorial heuristic for graph isomorphism is the Weisfeiler-Leman test together with its higher order variants. On the other hand, both problems can be reformulated as integer programs and various LP methods can be applied to obtain high-quality relaxations that can still be solved efficiently. We study so-called fractional relaxations of these programs in the more general context where $textbf{A}$ and $textbf{B}$ are not graphs but arbitrary relational structures. We give a combinatorial characterization of the Sherali-Adams hierarchy applied to the homomorphism problem in terms of fractional isomorphism. Collaterally, we also extend a number of known results from graph theory to give a characterization of the notion of fractional isomorphism for relational structures in terms of the Weisfeiler-Leman test, equitable partitions, and counting homomorphisms from trees. As a result, we obtain a description of the families of CSPs that are closed under Weisfeiler-Leman invariance in terms of their polymorphisms as well as decidability by the first level of the Sherali-Adams hierarchy.
Let $G$ be any $n$-vertex graph whose random walk matrix has its nontrivial eigenvalues bounded in magnitude by $1/sqrt{Delta}$ (for example, a random graph $G$ of average degree~$Theta(Delta)$ typically has this property). We show that the $expBig(c
The $k$-dimensional Weisfeiler-Leman procedure ($k$-WL), which colors $k$-tuples of vertices in rounds based on the neighborhood structure in the graph, has proven to be immensely fruitful in the algorithmic study of Graph Isomorphism. More generally
We give a Markov chain based algorithm for sampling almost uniform solutions of constraint satisfaction problems (CSPs). Assuming a canonical setting for the Lovasz local lemma, where each constraint is violated by a small number of forbidden local c
The $k$-dimensional Weisfeiler-Leman algorithm ($k$-WL) is a fruitful approach to the Graph Isomorphism problem. 2-WL corresponds to the original algorithm suggested by Weisfeiler and Leman over 50 years ago. 1-WL is the classical color refinement ro
Random Constraint Satisfaction Problems exhibit several phase transitions when their density of constraints is varied. One of these threshold phenomena, known as the clustering or dynamic transition, corresponds to a transition for an information the