ﻻ يوجد ملخص باللغة العربية
We give a Markov chain based algorithm for sampling almost uniform solutions of constraint satisfaction problems (CSPs). Assuming a canonical setting for the Lovasz local lemma, where each constraint is violated by a small number of forbidden local configurations, our sampling algorithm is accurate in a local lemma regime, and the running time is a fixed polynomial whose dependency on $n$ is close to linear, where $n$ is the number of variables. Our main approach is a new technique called state compression, which generalizes the mark/unmark paradigm of Moitra (Moitra, JACM, 2019), and can give fast local-lemma-based sampling algorithms. As concrete applications of our technique, we give the current best almost-uniform samplers for hypergraph colorings and for CNF solutions.
We study the problem of sampling an approximately uniformly random satisfying assignment for atomic constraint satisfaction problems i.e. where each constraint is violated by only one assignment to its variables. Let $p$ denote the maximum probabilit
We introduce a novel Entropy-driven Monte Carlo (EdMC) strategy to efficiently sample solutions of random Constraint Satisfaction Problems (CSPs). First, we extend a recent result that, using a large-deviation analysis, shows that the geometry of the
Let $Phi = (V, mathcal{C})$ be a constraint satisfaction problem on variables $v_1,dots, v_n$ such that each constraint depends on at most $k$ variables and such that each variable assumes values in an alphabet of size at most $[q]$. Suppose that eac
Given a pair of graphs $textbf{A}$ and $textbf{B}$, the problems of deciding whether there exists either a homomorphism or an isomorphism from $textbf{A}$ to $textbf{B}$ have received a lot of attention. While graph homomorphism is known to be NP-com
For a finite relational structure A, let CSP(A) denote the CSP instances whose constraint relations are taken from A. The resulting family of problems CSP(A) has been considered heavily in a variety of computational contexts. In this article, we cons