ﻻ يوجد ملخص باللغة العربية
We present a formal geometric framework for the study of adiabatic quantum mechanics for arbitrary finite-dimensional non-degenerate Hamiltonians. This framework generalizes earlier holonomy interpretations of the geometric phase to non-cyclic states appearing for non-Hermitian Hamiltonians. We start with an investigation of the space of non-degenerate operators on a finite-dimensional state space. We then show how the energy bands of a Hamiltonian family form a covering space. Likewise, we show that the eigenrays form a bundle, a generalization of a principal bundle, which admits a natural connection yielding the (generalized) geometric phase. This bundle provides in addition a natural generalization of the quantum geometric tensor and derived tensors, and we show how it can incorporate the non-geometric dynamical phase as well. We finish by demonstrating how the bundle can be recast as a principal bundle, so that both the geometric phases and the permutations of eigenstates can be expressed simultaneously by means of standard holonomy theory.
The state of a quantum system may be steered towards a predesignated target state, employing a sequence of weak $textit{blind}$ measurements (where the detectors readouts are traced out). Here we analyze the steering of a two-level system using the i
We present calculations for the action of laser pulses on vibrational transfer within the H2+ and Na2 molecules in the presence of dissipation due to photodissociation of the molecule. The laser fields perform closed loops surrounding exceptional poi
The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often associated with phenomena that contradict our physical intuition. One example of particular interest is the state-exchange process predicted for a
In this paper, we present a U(1)-invariant expansion theory of the adiabatic process. As its application, we propose and discuss new sufficient adiabatic approximation conditions. In the new conditions, we find a new invariant quantity referred as qu
The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM