ﻻ يوجد ملخص باللغة العربية
While recent advancement of domain adaptation techniques is significant, most of methods only align a feature extractor and do not adapt a classifier to target domain, which would be a cause of performance degradation. We propose novel domain adaptation technique for object detection that aligns prediction output space. In addition to feature alignment, we aligned predictions of locations and class confidences of our vehicle detector for satellite images by adversarial training. The proposed method significantly improved AP score by over 5%, which shows effectivity of our method for object detection tasks in satellite images.
Network alignment is a critical task to a wide variety of fields. Many existing works leverage on representation learning to accomplish this task without eliminating domain representation bias induced by domain-dependent features, which yield inferio
In this work, we address the task of unsupervised domain adaptation (UDA) for semantic segmentation in presence of multiple target domains: The objective is to train a single model that can handle all these domains at test time. Such a multi-target a
Adversarial examples are perturbed inputs which can cause a serious threat for machine learning models. Finding these perturbations is such a hard task that we can only use the iterative methods to traverse. For computational efficiency, recent works
Real-world object detectors are often challenged by the domain gaps between different datasets. In this work, we present the Conditional Domain Normalization (CDN) to bridge the domain gap. CDN is designed to encode different domain inputs into a sha
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which