ﻻ يوجد ملخص باللغة العربية
Network alignment is a critical task to a wide variety of fields. Many existing works leverage on representation learning to accomplish this task without eliminating domain representation bias induced by domain-dependent features, which yield inferior alignment performance. This paper proposes a unified deep architecture (DANA) to obtain a domain-invariant representation for network alignment via an adversarial domain classifier. Specifically, we employ the graph convolutional networks to perform network embedding under the domain adversarial principle, given a small set of observed anchors. Then, the semi-supervised learning framework is optimized by maximizing a posterior probability distribution of observed anchors and the loss of a domain classifier simultaneously. We also develop a few variants of our model, such as, direction-aware network alignment, weight-sharing for directed networks and simplification of parameter space. Experiments on three real-world social network datasets demonstrate that our proposed approaches achieve state-of-the-art alignment results.
Heterogeneous domain adaptation (HDA) tackles the learning of cross-domain samples with both different probability distributions and feature representations. Most of the existing HDA studies focus on the single-source scenario. In reality, however, i
Unsupervised domain adaptation aims at transferring knowledge from the labeled source domain to the unlabeled target domain. Previous adversarial domain adaptation methods mostly adopt the discriminator with binary or $K$-dimensional output to perfor
While deep neural networks demonstrate state-of-the-art performance on a variety of learning tasks, their performance relies on the assumption that train and test distributions are the same, which may not hold in real-world applications. Domain gener
Deep neural networks, trained with large amount of labeled data, can fail to generalize well when tested with examples from a emph{target domain} whose distribution differs from the training data distribution, referred as the emph{source domain}. It
Unsupervised domain adaptation aims to transfer the classifier learned from the source domain to the target domain in an unsupervised manner. With the help of target pseudo-labels, aligning class-level distributions and learning the classifier in the