ﻻ يوجد ملخص باللغة العربية
$W$-representation is a miraculous possibility to define a non-perturbative (exact) partition function as an exponential action of somehow integrated Ward identities on unity. It is well known for numerous eigenvalue matrix models when the relevant operators are of a kind of $W$-operators: for the Hermitian matrix model with the Virasoro constraints, it is a $W_3$-like operator, and so on. We extend this statement to the monomial generalized Kontsevich models (GKM), where the new feature is the appearance of an ordered P-exponential for the set of non-commuting operators of different gradings.
We study two-dimensional non-abelian BF theory in Lorenz gauge and prove that it is a topological conformal field theory. This opens the possibility to compute topological string amplitudes (Gromov-Witten invariants). We found that the theory is exac
We determine the dimension of the moduli space of non-Abelian vortices in Yang-Mills-Chern-Simons-Higgs theory in 2+1 dimensions for gauge groups $G=U(1)times G$ with $G$ being an arbitrary semi-simple group. The calculation is carried out using a Ca
The inclusion of non-Abelian U(N) internal charges (other than the electric charge) into Twistor Theory is accomplished through the concept of colored twistors (ctwistors for short) transforming under the colored conformal symmetry U(2N,2N). In parti
On the basis of recent results extending non-trivially the Poincare symmetry, we investigate the properties of bosonic multiplets including $2-$form gauge fields. Invariant free Lagrangians are explicitly built which involve possibly $3-$ and $4-$for
This is the first of two companion papers. The joint aim is to study a generalization to higher dimension of the point vortex systems familiar in 2-D. In this paper we classify the momentum polytopes for the action of the Lie group SU(3) on products