ترغب بنشر مسار تعليمي؟ اضغط هنا

Convex optimization of bioprocesses

99   0   0.0 ( 0 )
 نشر من قبل Alain Rapaport
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Josh Taylor




اسأل ChatGPT حول البحث

We optimize a general model of bioprocesses, which is nonconvex due to the microbial growth in the biochemical reactors. We formulate a convex relaxation and give conditions guaranteeing its exactness in both the transient and steady state cases. When the growth kinetics are modeled by the Monod function under constant biomass or the Contois function, the relaxation is a second-order cone program, which can be solved efficiently at large scales. We implement the model on a numerical example based on a wastewater treatment system.



قيم البحث

اقرأ أيضاً

Many control policies used in various applications determine the input or action by solving a convex optimization problem that depends on the current state and some parameters. Common examples of such convex optimization control policies (COCPs) incl ude the linear quadratic regulator (LQR), convex model predictive control (MPC), and convex control-Lyapunov or approximate dynamic programming (ADP) policies. These types of control policies are tuned by varying the parameters in the optimization problem, such as the LQR weights, to obtain good performance, judged by application-specific metrics. Tuning is often done by hand, or by simple methods such as a crude grid search. In this paper we propose a method to automate this process, by adjusting the parameters using an approximate gradient of the performance metric with respect to the parameters. Our method relies on recently developed methods that can efficiently evaluate the derivative of the solution of a convex optimization problem with respect to its parameters. We illustrate our method on several examples.
The basic reproduction number $R_0$ is a fundamental quantity in epidemiological modeling, reflecting the typical number of secondary infections that arise from a single infected individual. While $R_0$ is widely known to scientists, policymakers, an d the general public, it has received comparatively little attention in the controls community. This note provides two novel characterizations of $R_0$: a stability characterization and a geometric program characterization. The geometric program characterization allows us to write $R_0$-constrained and budget-constrained optimal resource allocation problems as geometric programs, which are easily transformed into convex optimization problems. We apply these programs to a case study of allocating vaccines and antidotes, finding that targeting $R_0$ instead of the spectral abscissa of the Jacobian matrix (a common target in the controls literature) leads to qualitatively different solutions.
In this paper we propose several adaptive gradient methods for stochastic optimization. Unlike AdaGrad-type of methods, our algorithms are based on Armijo-type line search and they simultaneously adapt to the unknown Lipschitz constant of the gradien t and variance of the stochastic approximation for the gradient. We consider an accelerated and non-accelerated gradient descent for convex problems and gradient descent for non-convex problems. In the experiments we demonstrate superiority of our methods to existing adaptive methods, e.g. AdaGrad and Adam.
We propose an accelerated meta-algorithm, which allows to obtain accelerated methods for convex unconstrained minimization in different settings. As an application of the general scheme we propose nearly optimal methods for minimizing smooth function s with Lipschitz derivatives of an arbitrary order, as well as for smooth minimax optimization problems. The proposed meta-algorithm is more general than the ones in the literature and allows to obtain better convergence rates and practical performance in several settings.
94 - Hao Luo 2021
This work introduces a second-order differential inclusion for unconstrained convex optimization. In continuous level, solution existence in proper sense is obtained and exponential decay of a novel Lyapunov function along with the solution trajector y is derived as well. Then in discrete level, based on numerical discretizations of the continuous differential inclusion, both an inexact accelerated proximal point algorithm and an inexact accelerated proximal gradient method are proposed, and some new convergence rates are established via a discrete Lyapunov function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا