ﻻ يوجد ملخص باللغة العربية
Many control policies used in various applications determine the input or action by solving a convex optimization problem that depends on the current state and some parameters. Common examples of such convex optimization control policies (COCPs) include the linear quadratic regulator (LQR), convex model predictive control (MPC), and convex control-Lyapunov or approximate dynamic programming (ADP) policies. These types of control policies are tuned by varying the parameters in the optimization problem, such as the LQR weights, to obtain good performance, judged by application-specific metrics. Tuning is often done by hand, or by simple methods such as a crude grid search. In this paper we propose a method to automate this process, by adjusting the parameters using an approximate gradient of the performance metric with respect to the parameters. Our method relies on recently developed methods that can efficiently evaluate the derivative of the solution of a convex optimization problem with respect to its parameters. We illustrate our method on several examples.
Min-max problems have broad applications in machine learning, including learning with non-decomposable loss and learning with robustness to data distribution. Convex-concave min-max problem is an active topic of research with efficient algorithms and
The convex analytic method (generalized by Borkar) has proved to be a very versatile method for the study of infinite horizon average cost optimal stochastic control problems. In this paper, we revisit the convex analytic method and make three primar
Structured problems arise in many applications. To solve these problems, it is important to leverage the structure information. This paper focuses on convex problems with a finite-sum compositional structure. Finite-sum problems appear as the sample
In this paper, we demonstrate the power of a widely used stochastic estimator based on moving average (SEMA) on a range of stochastic non-convex optimization problems, which only requires {bf a general unbiased stochastic oracle}. We analyze various
Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers. However, even in the few-shot regime, discriminatively trained linear predictors can offer better generalization. We propose to use