ﻻ يوجد ملخص باللغة العربية
The BINGO telescope was designed to measure the fluctuations of the 21-cm radiation arising from the hyperfine transition of neutral hydrogen and aims to measure the Baryon Acoustic Oscillations (BAO) from such fluctuations, therefore serving as a pathfinder to future deeper intensity mapping surveys. The requirements for the Phase 1 of the projects consider a large reflector system (two 40 m-class dishes in a crossed-Dragone configuration), illuminating a focal plane with 28 horns to measure the sky with two circular polarisations in a drift scan mode to produce measurements of the radiation in intensity as well as the circular polarisation. In this paper we present the optical design for the instrument. We describe the intensity and polarisation properties of the beams and the optical arrangement of the horns in the focal plane to produce a homogeneous and well-sampled map after the end of Phase 1. Our analysis provides an optimal model for the location of the horns in the focal plane, producing a homogeneous and Nyquist sampled map after the nominal survey time. We arrive at an optimal configuration for the optical system, including the focal plane positioning and the beam behavior of the instrument. We present an estimate of the expected side lobes both for intensity and polarisation, as well as the effect of band averaging on the final side lobes. The cross polarisation leakage values for the final configuration allow us to conclude that the optical arrangement meets the requirements of the project. We conclude that the chosen optical design meets the requirements for the project in terms of polarisation purity, area coverage as well as homogeneity of coverage so that BINGO can perform a successful BAO experiment. We further conclude that the requirements on the placement and r.m.s. error on the mirrors are also achievable so that a successful experiment can be conducted.(Abridged)
The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (95, 150 and 220 GHz) with ~16,000 transition-edge sensor (TES) bolometers. Each multichroic pixel on a detector wafe
The measurement of the diffuse $21$-cm radiation from the hyperfine transition of neutral hydrogen (HI signal) in different redshifts is an important tool for modern cosmology. However, detecting this faint signal with non-cryogenic receivers in sing
During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the p
In this paper, we present the design and the expected performance of the classical Lyot coronagraph for the high contrast imaging modes of the wide-field imager MICADO. MICADO is a near-IR camera for the Extremely Large Telescope (ELT, previously E-E
The Cosmology Large Angular Scale Surveyor (CLASS) aims to detect and characterize the primordial B-mode signal and make a sample-variance-limited measurement of the optical depth to reionization. CLASS is a ground-based, multi-frequency microwave po