ﻻ يوجد ملخص باللغة العربية
In this paper, we present the design and the expected performance of the classical Lyot coronagraph for the high contrast imaging modes of the wide-field imager MICADO. MICADO is a near-IR camera for the Extremely Large Telescope (ELT, previously E-ELT), with wide-field, spectroscopic and coronagraphic capabilities. MICADO is one of the first-light instruments selected by the ESO. Optimized to work with a multi-conjugate adaptive optics corrections provided by the MOARY module, it will also come with a SCAO correction with a high-level, on-axis correction, making use of the M4 adaptive mirror of the telescope. After presenting the context of the high contrast imaging modes in MICADO, we describe the selection process for the focal plane masks and Lyot stop. We will also show results obtained in realistic conditions, taking into account AO residuals, atmospheric refraction, noise sources and simulating observations in angular differential imaging (ADI) mode. Based on SPHERE on-sky results, we will discuss the achievable gain in contrast and angular separation provided by MICADO over the current instruments on 10-m class telescopes, in particular for imaging young giant planets at very short separations around nearby stars as well as planets on wider orbits around more distant stars in young stellar associations.
We report on our ongoing efforts to ensure that the MICADO NIR imager reaches differential absolute (often abbreviated: relative) astrometric performance limited by the SNR of typical observations. The exceptional 39m diameter collecting area in comb
MICADO will enable the ELT to perform diffraction limited near-infrared observations at first light. The instruments capabilities focus on imaging (including astrometric and high contrast) as well as single object spectroscopy. This contribution look
MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instruments observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. The
During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the p
We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex masks are designed for the entrance pupil, focal