ﻻ يوجد ملخص باللغة العربية
We show that the Davies generator associated to any 2D Kitaevs quantum double model has a non-vanishing spectral gap in the thermodynamic limit. This validates rigorously the extended belief that those models are useless as self-correcting quantum memories, even in the non-abelian case. The proof uses recent ideas and results regarding the characterization of the spectral gap for parent Hamiltonians associated to Projected Entangled Pair States in terms of a bulk-boundary correspondence.
The thermalization process of the 2D Kitaev model is studied within the Markovian weak coupling approximation. It is shown that its largest relaxation time is bounded from above by a constant independent of the system size and proportional to $exp(2D
The computation of the ground state (i.e. the eigenvector related to the smallest eigenvalue) is an important task in the simulation of quantum many-body systems. As the dimension of the underlying vector space grows exponentially in the number of pa
The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with mo
Kitaevs quantum double models in 2D provide some of the most commonly studied examples of topological quantum order. In particular, the ground space is thought to yield a quantum error-correcting code. We offer an explicit proof that this is the case
Tensor network states provide successful descriptions of strongly correlated quantum systems with applications ranging from condensed matter physics to cosmology. Any family of tensor network states possesses an underlying entanglement structure give