ﻻ يوجد ملخص باللغة العربية
This paper makes three contributions to estimating the number of perfect matching in bipartite graphs. First, we prove that the popular sequential importance sampling algorithm works in polynomial time for dense bipartite graphs. More carefully, our algorithm gives a $(1-epsilon)$-approximation for the number of perfect matchings of a $lambda$-dense bipartite graph, using $O(n^{frac{1-2lambda}{8lambda}+epsilon^{-2}})$ samples. With size $n$ on each side and for $frac{1}{2}>lambda>0$, a $lambda$-dense bipartite graph has all degrees greater than $(lambda+frac{1}{2})n$. Second, practical applications of the algorithm requires many calls to matching algorithms. A novel preprocessing step is provided which makes significant improvements. Third, three applications are provided. The first is for counting Latin squares, the second is a practical way of computing the greedy algorithm for a card guessing game with feedback, and the third is for stochastic block models. In all three examples, sequential importance sampling allows treating practical problems of reasonably large sizes.
Coupling from the past (CFTP) methods have been used to generate perfect samples from finite Gibbs hard-sphere models, an important class of spatial point processes, which is a set of spheres with the centers on a bounded region that are distributed
Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard ap
We consider the distributional fixed-point equation: $$R stackrel{mathcal{D}}{=} Q vee left( bigvee_{i=1}^N C_i R_i right),$$ where the ${R_i}$ are i.i.d.~copies of $R$, independent of the vector $(Q, N, {C_i})$, where $N in mathbb{N}$, $Q, {C_i} geq
We consider random perfect matchings on a general class of contracting bipartite graphs by letting certain edge weights be 0 on the contracting square-hexagon lattice in a periodic way. We obtain a deterministic limit shape in the scaling limit. The
In this paper we further investigate the well-studied problem of finding a perfect matching in a regular bipartite graph. The first non-trivial algorithm, with running time $O(mn)$, dates back to K{o}nigs work in 1916 (here $m=nd$ is the number of ed