ترغب بنشر مسار تعليمي؟ اضغط هنا

Perfect Matchings via Uniform Sampling in Regular Bipartite Graphs

155   0   0.0 ( 0 )
 نشر من قبل Ashish Goel
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we further investigate the well-studied problem of finding a perfect matching in a regular bipartite graph. The first non-trivial algorithm, with running time $O(mn)$, dates back to K{o}nigs work in 1916 (here $m=nd$ is the number of edges in the graph, $2n$ is the number of vertices, and $d$ is the degree of each node). The currently most efficient algorithm takes time $O(m)$, and is due to Cole, Ost, and Schirra. We improve this running time to $O(min{m, frac{n^{2.5}ln n}{d}})$; this minimum can never be larger than $O(n^{1.75}sqrt{ln n})$. We obtain this improvement by proving a uniform sampling theorem: if we sample each edge in a $d$-regular bipartite graph independently with a probability $p = O(frac{nln n}{d^2})$ then the resulting graph has a perfect matching with high probability. The proof involves a decomposition of the graph into pieces which are guaranteed to have many perfect matchings but do not have any small cuts. We then establish a correspondence between potential witnesses to non-existence of a matching (after sampling) in any piece and cuts of comparable size in that same piece. Kargers sampling theorem for preserving cuts in a graph can now be adapted to prove our uniform sampling theorem for preserving perfect matchings. Using the $O(msqrt{n})$ algorithm (due to Hopcroft and Karp) for finding maximum matchings in bipartite graphs on the sampled graph then yields the stated running time. We also provide an infinite family of instances to show that our uniform sampling result is tight up to poly-logarithmic factors (in fact, up to $ln^2 n$).



قيم البحث

اقرأ أيضاً

We consider the well-studied problem of finding a perfect matching in $d$-regular bipartite graphs with $2n$ vertices and $m = nd$ edges. While the best-known algorithm for general bipartite graphs (due to Hopcroft and Karp) takes $O(m sqrt{n})$ time , in regular bipartite graphs, a perfect matching is known to be computable in $O(m)$ time. Very recently, the $O(m)$ bound was improved to $O(min{m, frac{n^{2.5}ln n}{d}})$ expected time, an expression that is bounded by $tilde{O}(n^{1.75})$. In this paper, we further improve this result by giving an $O(min{m, frac{n^2ln^3 n}{d}})$ expected time algorithm for finding a perfect matching in regular bipartite graphs; as a function of $n$ alone, the algorithm takes expected time $O((nln n)^{1.5})$. To obtain this result, we design and analyze a two-stage sampling scheme that reduces the problem of finding a perfect matching in a regular bipartite graph to the same problem on a subsampled bipartite graph with $O(nln n)$ edges that has a perfect matching with high probability. The matching is then recovered using the Hopcroft-Karp algorithm. While the standard analysis of Hopcroft-Karp gives us an $tilde{O}(n^{1.5})$ running time, we present a tighter analysis for our special case that results in the stronger $tilde{O}(min{m, frac{n^2}{d} })$ time mentioned earlier. Our proof of correctness of this sampling scheme uses a new correspondence theorem between cuts and Halls theorem ``witnesses for a perfect matching in a bipartite graph that we prove. We believe this theorem may be of independent interest; as another example application, we show that a perfect matching in the support of an $n times n$ doubly stochastic matrix with $m$ non-zero entries can be found in expected time $tilde{O}(m + n^{1.5})$.
Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect matchings which transforms one given perfect match ing to another given perfect matching such that the symmetric difference of each pair of consecutive perfect matchings is a single cycle. The problem is equivalent to the combinatorial shortest path problem in perfect matching polytopes. We prove that the problem is NP-hard even when a given graph is planar or bipartite, but it can be solved in polynomial time when the graph is outerplanar.
We present a randomized algorithm that takes as input an undirected $n$-vertex graph $G$ with maximum degree $Delta$ and an integer $k > 3Delta$, and returns a random proper $k$-coloring of $G$. The distribution of the coloring is emph{perfectly} uni form over the set of all proper $k$-colorings; the expected running time of the algorithm is $mathrm{poly}(k,n)=widetilde{O}(nDelta^2cdot log(k))$. This improves upon a result of Huber~(STOC 1998) who obtained a polynomial time perfect sampling algorithm for $k>Delta^2+2Delta$. Prior to our work, no algorithm with expected running time $mathrm{poly}(k,n)$ was known to guarantee perfectly sampling with sub-quadratic number of colors in general. Our algorithm (like several other perfect sampling algorithms including Hubers) is based on the Coupling from the Past method. Inspired by the emph{bounding chain} approach, pioneered independently by Huber~(STOC 1998) and Haggstrom & Nelander~(Scand.{} J.{} Statist., 1999), we employ a novel bounding chain to derive our result for the graph coloring problem.
52 - Zhongyang Li 2020
We consider random perfect matchings on a general class of contracting bipartite graphs by letting certain edge weights be 0 on the contracting square-hexagon lattice in a periodic way. We obtain a deterministic limit shape in the scaling limit. The results can also be applied to prove the existence of multiple disconnected liquid regions for all the contracting square-hexagon lattices with certain edge weights, extending the results proved in [13] for contracting square-hexagon lattices where the number of square rows in each period is either 0 or 1.
A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seym our (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with $n$ vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically $cgamma^n$, where $c>0$ and $gamma sim 1.14196$ is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا