ﻻ يوجد ملخص باللغة العربية
Recent explorations on how to construct a double copy of massive gauge fields have shown that, while any amplitude can be written in a form consistent with colour-kinematics duality, the double copy is generically unphysical. In this paper, we explore a new direction in which we can obtain a sensible double copy of massive gauge fields due to the special kinematics in three-dimensional spacetimes. To avoid the appearance of spurious poles at 5-points, we only require that the scattering amplitudes satisfy one BCJ relation. We show that the amplitudes of Topologically Massive Yang-Mills satisfy this relation and that their double copy at three, four, and five-points is Topologically Massive Gravity.
It is well-known that General Relativity (GR) in three spacetime dimensions (3D) has no well-defined Newtonian limit. Recently, a static solution mimicking the behaviour of the expected Newtonian potential has been found in arXiv:1904.11001 by studyi
While the Kerr-Schild double copy of the Coulomb solution in dimensions higher than three is the Schwarzschild black hole, it is known that it should be a non-vacuum solution in three dimensions. We show that the static black hole solution of Einstei
The Kerr-Schild double copy is a map between exact solutions of general relativity and Maxwells theory, where the nonlinear nature of general relativity is circumvented by considering solutions in the Kerr-Schild form. In this paper, we give a genera
We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Hi
We construct the gravitational theory emerging from the double-copy of massive scalar quantum chromodynamics in general dimensions. The resulting two-form-dilaton-gravity theory couples to flavored massive scalars gravitationally and via the dilaton.