ﻻ يوجد ملخص باللغة العربية
The Kerr-Schild double copy is a map between exact solutions of general relativity and Maxwells theory, where the nonlinear nature of general relativity is circumvented by considering solutions in the Kerr-Schild form. In this paper, we give a general formulation, where no simplifying assumption about the background metric is made, and show that the gauge theory source is affected by a curvature term that characterizes the deviation of the background spacetime from a constant curvature spacetime. We demonstrate this effect explicitly by studying gravitational solutions with non-zero cosmological constant. We show that, when the background is flat, the constant charge density filling all space in the gauge theory that has been observed in previous works is a consequence of this curvature term. As an example of a solution with a curved background, we study the Lifshitz black hole with two different matter couplings. The curvature of the background, i.e., the Lifshitz spacetime, again yields a constant charge density; however, unlike the previous examples, it is canceled by the contribution from the matter fields. For one of the matter couplings, there remains no additional non-localized source term, providing an example for a non-vacuum gravity solution corresponding to a vacuum gauge theory solution in arbitrary dimensions.
While the Kerr-Schild double copy of the Coulomb solution in dimensions higher than three is the Schwarzschild black hole, it is known that it should be a non-vacuum solution in three dimensions. We show that the static black hole solution of Einstei
It is well-known that General Relativity (GR) in three spacetime dimensions (3D) has no well-defined Newtonian limit. Recently, a static solution mimicking the behaviour of the expected Newtonian potential has been found in arXiv:1904.11001 by studyi
We extend the standard Kerr-Schild solution generating method to higher order scalar tensor theories that are shift-invariant for the scalar field. Certain degeneracy conditions, crucial for the absence of Ostrogradski ghosts, are found to be require
Recent explorations on how to construct a double copy of massive gauge fields have shown that, while any amplitude can be written in a form consistent with colour-kinematics duality, the double copy is generically unphysical. In this paper, we explor
A characteristic value formulation of the Weyl double copy leads to an asymptotic formulation. We find that the Weyl double copy holds asymptotically in cases where the full solution is algebraically general, using rotating STU supergravity black hol