ﻻ يوجد ملخص باللغة العربية
Individual tree detection and crown delineation (ITDD) are critical in forest inventory management and remote sensing based forest surveys are largely carried out through satellite images. However, most of these surveys only use 2D spectral information which normally has not enough clues for ITDD. To fully explore the satellite images, we propose a ITDD method using the orthophoto and digital surface model (DSM) derived from the multi-view satellite data. Our algorithm utilizes the top-hat morphological operation to efficiently extract the local maxima from DSM as treetops, and then feed them to a modi-fied superpixel segmentation that combines both 2D and 3D information for tree crown delineation. In subsequent steps, our method incorporates the biological characteristics of the crowns through plant allometric equation to falsify potential outliers. Experiments against manually marked tree plots on three representative regions have demonstrated promising results - the best overall detection accuracy can be 89%.
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object from a sparse set of only six images captured by wide-baseline cameras under collocated point lighting. We
Accurate 3D human pose estimation from single images is possible with sophisticated deep-net architectures that have been trained on very large datasets. However, this still leaves open the problem of capturing motions for which no such database exis
Modern high-resolution satellite sensors collect optical imagery with ground sampling distances (GSDs) of 30-50cm, which has sparked a renewed interest in photogrammetric 3D surface reconstruction from satellite data. State-of-the-art reconstruction
This paper studies the task of estimating the 3D human poses of multiple persons from multiple calibrated camera views. Following the top-down paradigm, we decompose the task into two stages, i.e. person localization and pose estimation. Both stages
As an emerging data modal with precise distance sensing, LiDAR point clouds have been placed great expectations on 3D scene understanding. However, point clouds are always sparsely distributed in the 3D space, and with unstructured storage, which mak