ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images

101   0   0.0 ( 0 )
 نشر من قبل Size Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the task of estimating the 3D human poses of multiple persons from multiple calibrated camera views. Following the top-down paradigm, we decompose the task into two stages, i.e. person localization and pose estimation. Both stages are processed in coarse-to-fine manners. And we propose three task-specific graph neural networks for effective message passing. For 3D person localization, we first use Multi-view Matching Graph Module (MMG) to learn the cross-view association and recover coarse human proposals. The Center Refinement Graph Module (CRG) further refines the results via flexible point-based prediction. For 3D pose estimation, the Pose Regression Graph Module (PRG) learns both the multi-view geometry and structural relations between human joints. Our approach achieves state-of-the-art performance on CMU Panoptic and Shelf datasets with significantly lower computation complexity.



قيم البحث

اقرأ أيضاً

142 - He Chen , Pengfei Guo , Pengfei Li 2020
Epipolar constraints are at the core of feature matching and depth estimation in current multi-person multi-camera 3D human pose estimation methods. Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness i s frequently challenged under denser crowd circumstances mainly due to two sources of ambiguity. The first is the mismatch of human joints resulting from the simple cues provided by the Euclidean distances between joints and epipolar lines. The second is the lack of robustness from the naive formulation of the problem as a least squares minimization. In this paper, we depart from the multi-person 3D pose estimation formulation, and instead reformulate it as crowd pose estimation. Our method consists of two key components: a graph model for fast cross-view matching, and a maximum a posteriori (MAP) estimator for the reconstruction of the 3D human poses. We demonstrate the effectiveness and superiority of our proposed method on four benchmark datasets.
277 - Jiahao Lin , Gim Hee Lee 2021
Existing approaches for multi-view multi-person 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views and solve for the 3D pose estimation for each person. Establishing cross-view co rrespondences is challenging in multi-person scenes, and incorrect correspondences will lead to sub-optimal performance for the multi-stage pipeline. In this work, we present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot. Specifically, we propose to perform depth regression for each joint of each 2D pose in a target camera view. Cross-view consistency constraints are implicitly enforced by multiple reference camera views via the plane sweep algorithm to facilitate accurate depth regression. We adopt a coarse-to-fine scheme to first regress the person-level depth followed by a per-person joint-level relative depth estimation. 3D poses are obtained from a simple back-projection given the estimated depths. We evaluate our approach on benchmark datasets where it outperforms previous state-of-the-arts while being remarkably efficient. Our code is available at https://github.com/jiahaoLjh/PlaneSweepPose.
Multi-person 3D human pose estimation from a single image is a challenging problem, especially for in-the-wild settings due to the lack of 3D annotated data. We propose HG-RCNN, a Mask-RCNN based network that also leverages the benefits of the Hourgl ass architecture for multi-person 3D Human Pose Estimation. A two-staged approach is presented that first estimates the 2D keypoints in every Region of Interest (RoI) and then lifts the estimated keypoints to 3D. Finally, the estimated 3D poses are placed in camera-coordinates using weak-perspective projection assumption and joint optimization of focal length and root translations. The result is a simple and modular network for multi-person 3D human pose estimation that does not require any multi-person 3D pose dataset. Despite its simple formulation, HG-RCNN achieves the state-of-the-art results on MuPoTS-3D while also approximating the 3D pose in the camera-coordinate system.
Accurate 3D human pose estimation from single images is possible with sophisticated deep-net architectures that have been trained on very large datasets. However, this still leaves open the problem of capturing motions for which no such database exis ts. Manual annotation is tedious, slow, and error-prone. In this paper, we propose to replace most of the annotations by the use of multiple views, at training time only. Specifically, we train the system to predict the same pose in all views. Such a consistency constraint is necessary but not sufficient to predict accurate poses. We therefore complement it with a supervised loss aiming to predict the correct pose in a small set of labeled images, and with a regularization term that penalizes drift from initial predictions. Furthermore, we propose a method to estimate camera pose jointly with human pose, which lets us utilize multi-view footage where calibration is difficult, e.g., for pan-tilt or moving handheld cameras. We demonstrate the effectiveness of our approach on established benchmarks, as well as on a new Ski dataset with rotating cameras and expert ski motion, for which annotations are truly hard to obtain.
Current methods of multi-person pose estimation typically treat the localization and the association of body joints separately. It is convenient but inefficient, leading to additional computation and a waste of time. This paper, however, presents a n ovel framework PoseDet (Estimating Pose by Detection) to localize and associate body joints simultaneously at higher inference speed. Moreover, we propose the keypoint-aware pose embedding to represent an object in terms of the locations of its keypoints. The proposed pose embedding contains semantic and geometric information, allowing us to access discriminative and informative features efficiently. It is utilized for candidate classification and body joint localization in PoseDet, leading to robust predictions of various poses. This simple framework achieves an unprecedented speed and a competitive accuracy on the COCO benchmark compared with state-of-the-art methods. Extensive experiments on the CrowdPose benchmark show the robustness in the crowd scenes. Source code is available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا