ﻻ يوجد ملخص باللغة العربية
This paper studies the task of estimating the 3D human poses of multiple persons from multiple calibrated camera views. Following the top-down paradigm, we decompose the task into two stages, i.e. person localization and pose estimation. Both stages are processed in coarse-to-fine manners. And we propose three task-specific graph neural networks for effective message passing. For 3D person localization, we first use Multi-view Matching Graph Module (MMG) to learn the cross-view association and recover coarse human proposals. The Center Refinement Graph Module (CRG) further refines the results via flexible point-based prediction. For 3D pose estimation, the Pose Regression Graph Module (PRG) learns both the multi-view geometry and structural relations between human joints. Our approach achieves state-of-the-art performance on CMU Panoptic and Shelf datasets with significantly lower computation complexity.
Epipolar constraints are at the core of feature matching and depth estimation in current multi-person multi-camera 3D human pose estimation methods. Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness i
Existing approaches for multi-view multi-person 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views and solve for the 3D pose estimation for each person. Establishing cross-view co
Multi-person 3D human pose estimation from a single image is a challenging problem, especially for in-the-wild settings due to the lack of 3D annotated data. We propose HG-RCNN, a Mask-RCNN based network that also leverages the benefits of the Hourgl
Accurate 3D human pose estimation from single images is possible with sophisticated deep-net architectures that have been trained on very large datasets. However, this still leaves open the problem of capturing motions for which no such database exis
Current methods of multi-person pose estimation typically treat the localization and the association of body joints separately. It is convenient but inefficient, leading to additional computation and a waste of time. This paper, however, presents a n