ﻻ يوجد ملخص باللغة العربية
We consider a single run-and-tumble particle (RTP) moving in one dimension. We assume that the velocity of the particle is drawn independently at each tumbling from a zero-mean Gaussian distribution and that the run times are exponentially distributed. We investigate the probability distribution $P(X,N)$ of the position $X$ of the particle after $N$ runs, with $Ngg 1$. We show that in the regime $ X sim N^{3/4}$ the distribution $P(X,N)$ has a large deviation form with a rate function characterized by a discontinuous derivative at the critical value $X=X_c>0$. The same is true for $X=-X_c$ due to the symmetry of $P(X,N)$. We show that this singularity corresponds to a first-order condensation transition: for $X>X_c$ a single large jump dominates the RTP trajectory. We consider the participation ratio of the single-run displacements as the order parameter of the system, showing that this quantity is discontinuous at $X=X_c$. Our results are supported by numerical simulations performed with a constrained Markov chain Monte Carlo algorithm.
We study the probability distribution $P(X_N=X,N)$ of the total displacement $X_N$ of an $N$-step run and tumble particle on a line, in presence of a constant nonzero drive $E$. While the central limit theorem predicts a standard Gaussian form for $P
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions.
We consider self-propelled particles undergoing run-and-tumble dynamics (as exhibited by E. coli) in one dimension. Building on previous analyses at drift-diffusion level for the one-particle density, we add both interactions and noise, enabling disc
Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) both self-propel at fixed speed $v$ along a body-axis ${bf u}$ that reorients either through slow angular diffusion (ABPs) or sudden complete randomisation (RTPs). We compare the ph
We study two interacting identical run and tumble particles (RTPs) in one dimension. Each particle is driven by a telegraphic noise, and in some cases, also subjected to a thermal white noise with a corresponding diffusion constant $D$. We are intere