ﻻ يوجد ملخص باللغة العربية
Let $Omegasubseteq M$ be a bounded domain with smooth boundary $partialOmega$, where $(M,J,g)$ is a compact almost Hermitian manifold. Our main result of this paper is to consider the Dirichlet problem for complex Monge-Amp`{e}re equation on $Omega$. Under the existence of a $C^{2}$-smooth strictly $J$-plurisubharmonic ($J$-psh for short) subsolution, we can solve this Dirichlet problem. Our method is based on the properties of subsolution which have been widely used for fully nonlinear elliptic equations over Hermitian manifolds. %This work was already done by Plis when we assume there is a strictly $J$-psh defining function for $Omega$.
In this paper we consider the Monge-Amp`{e}re type equations on compact almost Hermitian manifolds. We derive a priori estimates under the existence of an admissible $mathcal{C}$-subsolution. Finally, we also obtain an existence theorem if there exists an admissible supersolution.
We review recent advances in the numerical analysis of the Monge-Amp`ere equation. Various computational techniques are discussed including wide-stencil finite difference schemes, two-scaled methods, finite element methods, and methods based on geome
Let $(X, omega)$ be a compact Kahler manifold of complex dimension n and $theta$ be a smooth closed real $(1,1)$-form on $X$ such that its cohomology class ${ theta }in H^{1,1}(X, mathbb{R})$ is pseudoeffective. Let $varphi$ be a $theta$-psh function
We develop a new approach to $L^{infty}$-a priori estimates for degenerate complex Monge-Amp`ere equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel cite{GL21a} we h
We prove the existence of a continuous quasi-plurisubharmonic solution to the Monge-Amp`ere equation on a compact Hermitian manifold for a very general measre on the right hand side. We admit measures dominated by capacity in a certain manner, in par