ﻻ يوجد ملخص باللغة العربية
We review recent advances in the numerical analysis of the Monge-Amp`ere equation. Various computational techniques are discussed including wide-stencil finite difference schemes, two-scaled methods, finite element methods, and methods based on geometric considerations. Particular focus is the development of appropriate stability and consistency estimates which lead to rates of convergence of the discrete approximations. Finally we present numerical experiments which highlight each method for a variety of test problem with different levels of regularity.
Let $(X, omega)$ be a compact Kahler manifold of complex dimension n and $theta$ be a smooth closed real $(1,1)$-form on $X$ such that its cohomology class ${ theta }in H^{1,1}(X, mathbb{R})$ is pseudoeffective. Let $varphi$ be a $theta$-psh function
Let $Omegasubseteq M$ be a bounded domain with smooth boundary $partialOmega$, where $(M,J,g)$ is a compact almost Hermitian manifold. Our main result of this paper is to consider the Dirichlet problem for complex Monge-Amp`{e}re equation on $Omega$.
In this paper we consider the Monge-Amp`{e}re type equations on compact almost Hermitian manifolds. We derive a priori estimates under the existence of an admissible $mathcal{C}$-subsolution. Finally, we also obtain an existence theorem if there exists an admissible supersolution.
We study complex geodesics and complex Monge-Amp`{e}re equations on bounded strongly linearly convex domains in $mathbb C^n$. More specifically, we prove the uniqueness of complex geodesics with prescribed boundary value and direction in such a domai
The purpose of this paper is to establish a Lagrangian potential theory, analogous to the classical pluripotential theory, and to define and study a Lagrangian differential operator of Monge-Ampere type. This development is new even in ${bf C}^n$. Ho