ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing molecular excited states on a D-Wave quantum annealer

74   0   0.0 ( 0 )
 نشر من قبل Alexander Teplukhin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility of using quantum computers for electronic structure calculations has opened up a promising avenue for computational chemistry. Towards this direction, numerous algorithmic advances have been made in the last five years. The potential of quantum annealers, which are the prototypes of adiabatic quantum computers, is yet to be fully explored. In this work, we demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems. These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience. The excited states are treated using two methods, time-dependent Hartree-Fock (TDHF) and time-dependent density-functional theory (TDDFT), both within a commonly used Tamm-Dancoff approximation (TDA). The resulting TDA eigenvalue equations are solved on a D-Wave quantum annealer using the Quantum Annealer Eigensolver (QAE), developed previously. The method is shown to reproduce a typical basis set convergence on the example H$_2$ molecule and is also applied to several other molecular species. Characteristic properties such as transition dipole moments and oscillator strengths are computed as well. Three potential energy profiles for excited states are computed for NH$_3$ as a function of the molecular geometry. Similar to previous studies, the accuracy of the method is dependent on the accuracy of the intermediate meta-heuristic software called qbsolv.



قيم البحث

اقرأ أيضاً

Quantum chemistry is regarded to be one of the first disciplines that will be revolutionized by quantum computing. Although universal quantum computers of practical scale may be years away, various approaches are currently being pursued to solve quan tum chemistry problems on near-term gate-based quantum computers and quantum annealers by developing the appropriate algorithm and software base. This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer. The approach is based on the matrix formulation, efficiently uses qubit resources based on a power-of-two encoding scheme and is hardware-dominant relying on only one classically optimized parameter. We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems. This approach can be adapted for use by a vast majority of electronic structure methods currently implemented in conventional quantum-chemical packages. The results of this work will encourage further development of software such as qbsolv which has promising applications in emerging quantum information processing hardware and is able to address large and complex optimization problems intractable for classical computers.
This paper explores the utility of the quantum phase estimation (QPE) in calculating high-energy excited states characterized by promotions of electrons occupying inner energy shells. These states have been intensively studied over the last few decad es especially in supporting the experimental effort at light sources. Results obtained with the QPE are compared with various high-accuracy many-body techniques developed to describe core-level states. The feasibility of the quantum phase estimator in identifying classes of challenging shake-up states characterized by the presence of higher-order excitation effects is also discussed.
Quantum computers are ideal for solving chemistry problems due to their polynomial scaling with system size in contrast to classical computers which scale exponentially. Until now molecular energy calculations using quantum computing hardware have be en limited to quantum simulators. In this paper, a new methodology is presented to calculate the vibrational spectrum of a molecule on a quantum annealer. The key idea of the method is a mapping of the ground state variational problem onto an Ising or quadratic unconstrained binary optimization (QUBO) problem by expressing the expansion coefficients using spins or qubits. The algorithm is general and represents a new revolutionary approach for solving the real symmetric eigenvalue problem on a quantum annealer. The method is applied to two chemically important molecules: O$_2$ (oxygen) and O$_3$ (ozone). The lowest two vibrational states of these molecules are computed using both a hardware quantum annealer and a software based classical annealer.
Lattice gauge theory is an essential tool for strongly interacting non-Abelian fields, such as those in quantum chromodynamics where lattice results have been of central importance for several decades. Recent studies suggest that quantum computers co uld extend the reach of lattice gauge theory in dramatic ways, but the usefulness of quantum annealing hardware for lattice gauge theory has not yet been explored. In this work, we implement SU(2) pure gauge theory on a quantum annealer for lattices comprising a few plaquettes in a row with a periodic boundary condition. These plaquettes are in two spatial dimensions and calculations use the Hamiltonian formulation where time is not discretized. Numerical results are obtained from calculations on D-Wave Advantage hardware for eigenvalues, eigenvectors, vacuum expectation values, and time evolution. The success of this initial exploration indicates that the quantum annealer might become a useful hardware platform for some aspects of lattice gauge theories.
In quantum chemistry, obtaining a systems mean-field solution and incorporating electron correlation in a post Hartree-Fock (HF) manner comprise one of the standard protocols for ground-state calculations. In principle, this scheme can also describe excited states but is not widely used at present, primarily due to the difficulty of locating the mean-field excited states. With recent developments in excited-state orbital relaxation, self-consistent excited-state solutions can now be located routinely at various levels of theory. In this work, we explore the possibility of correcting HF excited states using M{o}ller-Plesset perturbation theory to the second order. Among various PT2 variants, we find that the restricted open-shell MP2 (ROMP2) gives excitation energies comparable to the best density functional theory results, delivering $sim 0.2$ eV mean unsigned error over a wide range of single-configuration state function excitations, at only non-iterative $O(N^5)$ computational scaling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا