ترغب بنشر مسار تعليمي؟ اضغط هنا

On a sinc-type MBE model

108   0   0.0 ( 0 )
 نشر من قبل Dong Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new sinc-type molecular beam epitaxy model which is derived from a cosine-type energy functional. The landscape of the new functional is remarkably similar to the classical MBE model with double well potential but has the additional advantage that all its derivatives are uniformly bounded. We consider first order IMEX and second order BDF2 discretization schemes. For both cases we quantify explicit time step constraints for the energy dissipation which is in good accord with the practical numerical simulations. Furthermore we introduce a new theoretical framework and prove unconditional uniform energy boundedness with no size restrictions on the time step. This is the first unconditional (i.e. independent of the time step size) result for semi-implicit methods applied to the phase field models without introducing any artificial stabilization terms or fictitious variables.



قيم البحث

اقرأ أيضاً

155 - Tomoaki Okayama 2013
The Sinc quadrature and the Sinc indefinite integration are approximation formulas for definite integration and indefinite integration, respectively, which can be applied on any interval by using an appropriate variable transformation. Their converge nce rates have been analyzed for typical cases including finite, semi-infinite, and infinite intervals. In addition, for verified automatic integration, more explicit error bounds that are computable have been recently given on a finite interval. In this paper, such explicit error bounds are given in the remaining cases on semi-infinite and infinite intervals.
238 - Tomoaki Okayama 2013
A Sinc-collocation method has been proposed by Stenger, and he also gave theoretical analysis of the method in the case of a `scalar equation. This paper extends the theoretical results to the case of a `system of equations. Furthermore, this paper p roposes more efficient method by replacing the variable transformation employed in Stengers method. The efficiency is confirmed by both of theoretical analysis and numerical experiments. In addition to the existing and newly-proposed Sinc-collocation methods, this paper also gives similar theoretical results for Sinc-Nystr{o}m methods proposed by Nurmuhammad et al. From a viewpoint of the computational cost, it turns out that the newly-proposed Sinc-collocation method is the most efficient among those methods.
119 - H. A. Erbay , S. Erbay , A. Erkip 2019
Numerical approximation of a general class of nonlinear unidirectional wave equations with a convolution-type nonlocality in space is considered. A semi-discrete numerical method based on both a uniform space discretization and the discrete convoluti on operator is introduced to solve the Cauchy problem. The method is proved to be uniformly convergent as the mesh size goes to zero. The order of convergence for the discretization error is linear or quadratic depending on the smoothness of the convolution kernel. The discrete problem defined on the whole spatial domain is then truncated to a finite domain. Restricting the problem to a finite domain introduces a localization error and it is proved that this localization error stays below a given threshold if the finite domain is large enough. For two particular kernel functions, the numerical examples concerning solitary wave solutions illustrate the expected accuracy of the method. Our class of nonlocal wave equations includes the Benjamin-Bona-Mahony equation as a special case and the present work is inspired by the previous work of Bona, Pritchard and Scott on numerical solution of the Benjamin-Bona-Mahony equation.
239 - Tomoaki Okayama 2013
A Sinc-Nystrom method for Volterra integro-differential equations was developed by Zarebnia in 2010. The method is quite efficient in the sense that exponential convergence can be obtained even if the given problem has endpoint singularity. However, its exponential convergence has not been proved theoretically. In addition, to implement the method, the regularity of the solution is required, although the solution is an unknown function in practice. This paper reinforces the method by presenting two theoretical results: 1) the regularity of the solution is analyzed, and 2) its convergence rate is rigorously analyzed. Moreover, this paper improves the method so that a much higher convergence rate can be attained, and theoretical results similar to those listed above are provided. Numerical comparisons are also provided.
235 - Jun Liu , Shu-Lin Wu 2021
The Sinc-Nystr{o}m method in time is a high-order spectral method for solving evolutionary differential equations and it has wide applications in scientific computation. But in this method we have to solve all the time steps implicitly at one-shot, w hich may results in a large-scale nonsymmetric dense system that is expensive to solve. In this paper, we propose and analyze a parallel-in-time (PinT) preconditioner for solving such Sinc-Nystr{o}m systems, where both the parabolic and hyperbolic PDEs are investigated. Attributed to the special Toeplitz-like structure of the Sinc-Nystr{o}m systems, the proposed PinT preconditioner is indeed a low-rank perturbation of the system matrix and we show that the spectrum of the preconditioned system is highly clustered around one, especially when the time step size is refined. Such a clustered spectrum distribution matches very well with the numerically observed mesh-independent GMRES convergence rates in various examples. Several linear and nonlinear ODE and PDE examples are presented to illustrate the convergence performance of our proposed PinT preconditioners, where the achieved exponential order of accuracy are especially attractive to those applications in need of high accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا