ﻻ يوجد ملخص باللغة العربية
Numerical approximation of a general class of nonlinear unidirectional wave equations with a convolution-type nonlocality in space is considered. A semi-discrete numerical method based on both a uniform space discretization and the discrete convolution operator is introduced to solve the Cauchy problem. The method is proved to be uniformly convergent as the mesh size goes to zero. The order of convergence for the discretization error is linear or quadratic depending on the smoothness of the convolution kernel. The discrete problem defined on the whole spatial domain is then truncated to a finite domain. Restricting the problem to a finite domain introduces a localization error and it is proved that this localization error stays below a given threshold if the finite domain is large enough. For two particular kernel functions, the numerical examples concerning solitary wave solutions illustrate the expected accuracy of the method. Our class of nonlocal wave equations includes the Benjamin-Bona-Mahony equation as a special case and the present work is inspired by the previous work of Bona, Pritchard and Scott on numerical solution of the Benjamin-Bona-Mahony equation.
The paper proposes a new, conservative fully-discrete scheme for the numerical solution of the regularised shallow water Boussinesq system of equations in the cases of periodic and reflective boundary conditions. The particular system is one of a cla
We develop a general framework for designing conservative numerical methods based on summation by parts operators and split forms in space, combined with relaxation Runge-Kutta methods in time. We apply this framework to create new classes of fully-d
We derive a numerical method for Darcy flow, hence also for Poissons equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its d
This work is devoted to the development and analysis of a linearization algorithm for microscopic elliptic equations, with scaled degenerate production, posed in a perforated medium and constrained by the homogeneous Neumann-Dirichlet boundary condit
In this paper, we conduct uniform error estimates of the bi-fidelity method for multi-scale kinetic equations. We take the Boltzmann and the linear transport equations as important examples. The main analytic tool is the hypocoercivity analysis for k