ﻻ يوجد ملخص باللغة العربية
This paper proves the following statement: {it If a convex body can form a twofold translative tiling in $mathbb{E}^3$, it must be a parallelohedron.} In other words, it must be a parallelotope, a hexagonal prism, a rhombic dodecahedron, an elongated dodecahedron, or a truncated octahedron.
This paper proves the following statement: If a convex body can form a three or fourfold translative tiling in three-dimensional space, it must be a parallelohedron. In other words, it must be a parallelotope, a hexagonal prism, a rhombic dodecahedro
A 3D rep-tile is a compact 3-manifold $X$ in $mathbb{R}^3$ that can be decomposed into finitely many pieces, each of which are similar to $X$, and all of which are congruent to each other. In this paper we classify all 3D rep-tiles up to homeomorphis
In this paper we determine new upper bounds for the maximal density of translative packings of superballs in three dimensions (unit balls for the $l^p_3$-norm) and of Platonic and Archimedean solids having tetrahedral symmetry. Thereby, we improve Zo
It is well known that if there exists a finite set of convex bodies on the plane with non-overlapping interiors, then there is at least one extremal one among them, i.e., some one which can be continuously taken away to the infinity (outside a large
A subset $X$ in the $d$-dimensional Euclidean space is called a $k$-distance set if there are exactly $k$ distances between two distinct points in $X$. Einhorn and Schoenberg conjectured that the vertices of the regular icosahedron is the only 12-poi