ﻻ يوجد ملخص باللغة العربية
In this paper we determine new upper bounds for the maximal density of translative packings of superballs in three dimensions (unit balls for the $l^p_3$-norm) and of Platonic and Archimedean solids having tetrahedral symmetry. Thereby, we improve Zongs recent upper bound for the maximal density of translative packings of regular tetrahedra from $0.3840ldots$ to $0.3745ldots$, getting closer to the best known lower bound of $0.3673ldots$ We apply the linear programming bound of Cohn and Elkies which originally was designed for the classical problem of densest packings of round spheres. The proofs of our new upper bounds are computational and rigorous. Our main technical contribution is the use of invariant theory of pseudo-reflection groups in polynomial optimization.
This paper proves the following statement: If a convex body can form a three or fourfold translative tiling in three-dimensional space, it must be a parallelohedron. In other words, it must be a parallelotope, a hexagonal prism, a rhombic dodecahedro
This paper proves the following statement: {it If a convex body can form a twofold translative tiling in $mathbb{E}^3$, it must be a parallelohedron.} In other words, it must be a parallelotope, a hexagonal prism, a rhombic dodecahedron, an elongated dodecahedron, or a truncated octahedron.
We present an alternative approach to some results of Koldobsky on measures of sections of symmetric convex bodies, which allows us to extend them to the not necessarily symmetric setting. We prove that if $K$ is a convex body in ${mathbb R}^n$ with
In this paper we construct a new family of lattice packings for superballs in three dimensions (unit balls for the $l^p_3$ norm) with $p in (1, 1.58]$. We conjecture that the family also exists for $p in (1.58, log_2 3 = 1.5849625ldots]$. Like in the
We define a set inner product to be a function on pairs of convex bodies which is symmetric, Minkowski linear in each dimension, positive definite, and satisfies the natural analogue of the Cauchy-Schwartz inequality (which is not implied by the othe