ﻻ يوجد ملخص باللغة العربية
Let $G=(V(G),E(G))$ be a simple graph with vertex set $V(G)={v_{1},v_{2},cdots, v_{n}}$ and edge set $E(G)$. The $p$-Sombor matrix $mathcal{S}_{p}(G)$ of $G$ is defined as the $(i,j)$ entry is $((d_{i})^{p}+(d_{j})^{p})^{frac{1}{p}}$ if $v_{i}sim v_{j}$, and 0 otherwise, where $d_{i}$ denotes the degree of vertex $v_{i}$ in $G$. In this paper, we study the relationship between $p$-Sombor index $SO_{p}(G)$ and $p$-Sombor matrix $S_{p}(G)$ by the $k$-th spectral moment $N_{k}$ and the spectral radius of $S_{p}(G)$. Then we obtain some bounds of $p$-Sombor Laplacian spectrum, $p$-Sombor spectral radius, $p$-Sombor spectral spread, $p$-Sombor energy and $p$-Sombor Estrada index. We also investigate the Nordhaus-Gaddum-type results for $p$-Sombor spectral radius and energy. At last, we give the regression model for boiling point and some other invariants.
In 1978 Gutman introduced the energy of a graph as the sum of the absolute values of graph eigenvalues, and ever since then graph energy has been intensively studied. Since graph energy is the trace norm of the adjacency matrix, matrix norms provid
Hexagonal chains are a special class of catacondensed benzenoid system and phenylene chains are a class of polycyclic aromatic compounds. Recently, A family of Sombor indices was introduced by Gutman in the chemical graph theory. It had been examined
Recently, a novel topological index, Sombor index, was introduced by Gutman, defined as $SO(G)=sumlimits_{uvin E(G)}sqrt{d_{u}^{2}+d_{v}^{2}}$, where $d_{u}$ denotes the degree of vertex $u$. In this paper, we first determine the maximum Sombor ind
Sombor index is a novel topological index introduced by Gutman, defined as $SO(G)=sumlimits_{uvin E(G)}sqrt{d_{u}^{2}+d_{v}^{2}}$, where $d_{u}$ denotes the degree of vertex $u$. Recently, Chen et al. [H. Chen, W. Li, J. Wang, Extremal values on the
Topological indices are a class of numerical invariants that predict certain physical and chemical properties of molecules. Recently, two novel topological indices, named as Sombor index and reduced Sombor index, were introduced by Gutman, defined as