ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking the Evaluation of Neural Machine Translation

95   0   0.0 ( 0 )
 نشر من قبل Jianhao Yan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The evaluation of neural machine translation systems is usually built upon generated translation of a certain decoding method (e.g., beam search) with evaluation metrics over the generated translation (e.g., BLEU). However, this evaluation framework suffers from high search errors brought by heuristic search algorithms and is limited by its nature of evaluation over one best candidate. In this paper, we propose a novel evaluation protocol, which not only avoids the effect of search errors but provides a system-level evaluation in the perspective of model ranking. In particular, our method is based on our newly proposed exact top-$k$ decoding instead of beam search. Our approach evaluates model errors by the distance between the candidate spaces scored by the references and the model respectively. Extensive experiments on WMT14 English-German demonstrate that bad ranking ability is connected to the well-known beam search curse, and state-of-the-art Transformer models are facing serious ranking errors. By evaluating various model architectures and techniques, we provide several interesting findings. Finally, to effectively approximate the exact search algorithm with same time cost as original beam search, we present a minimum heap augmented beam search algorithm.



قيم البحث

اقرأ أيضاً

The high-quality translation results produced by machine translation (MT) systems still pose a huge challenge for automatic evaluation. Current MT evaluation pays the same attention to each sentence component, while the questions of real-world examin ations (e.g., university examinations) have different difficulties and weightings. In this paper, we propose a novel difficulty-aware MT evaluation metric, expanding the evaluation dimension by taking translation difficulty into consideration. A translation that fails to be predicted by most MT systems will be treated as a difficult one and assigned a large weight in the final score function, and conversely. Experimental results on the WMT19 English-German Metrics shared tasks show that our proposed method outperforms commonly used MT metrics in terms of human correlation. In particular, our proposed method performs well even when all the MT systems are very competitive, which is when most existing metrics fail to distinguish between them. The source code is freely available at https://github.com/NLP2CT/Difficulty-Aware-MT-Evaluation.
177 - Deng Cai , Yan Wang , Huayang Li 2021
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose a new framework that uses monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Our framework has unique advantages. First, the cross-lingual memory retriever allows abundant monolingual data to be TM. Second, the memory retriever and NMT model can be jointly optimized for the ultimate translation goal. Experiments show that the proposed method obtains substantial improvements. Remarkably, it even outperforms strong TM-augmented NMT baselines using bilingual TM. Owning to the ability to leverage monolingual data, our model also demonstrates effectiveness in low-resource and domain adaptation scenarios.
The standard approach to incorporate linguistic information to neural machine translation systems consists in maintaining separate vocabularies for each of the annotated features to be incorporated (e.g. POS tags, dependency relation label), embed th em, and then aggregate them with each subword in the word they belong to. This approach, however, cannot easily accommodate annotation schemes that are not dense for every word. We propose a method suited for such a case, showing large improvements in out-of-domain data, and comparable quality for the in-domain data. Experiments are performed in morphologically-rich languages like Basque and German, for the case of low-resource scenarios.
Zero-shot translation, directly translating between language pairs unseen in training, is a promising capability of multilingual neural machine translation (NMT). However, it usually suffers from capturing spurious correlations between the output lan guage and language invariant semantics due to the maximum likelihood training objective, leading to poor transfer performance on zero-shot translation. In this paper, we introduce a denoising autoencoder objective based on pivot language into traditional training objective to improve the translation accuracy on zero-shot directions. The theoretical analysis from the perspective of latent variables shows that our approach actually implicitly maximizes the probability distributions for zero-shot directions. On two benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively eliminate the spurious correlations and significantly outperforms state-of-the-art methods with a remarkable performance. Our code is available at https://github.com/Victorwz/zs-nmt-dae.
Modern neural machine translation (NMT) models have achieved competitive performance in standard benchmarks such as WMT. However, there still exist significant issues such as robustness, domain generalization, etc. In this paper, we study NMT models from the perspective of compositional generalization by building a benchmark dataset, CoGnition, consisting of 216k clean and consistent sentence pairs. We quantitatively analyze effects of various factors using compound translation error rate, then demonstrate that the NMT model fails badly on compositional generalization, although it performs remarkably well under traditional metrics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا