ترغب بنشر مسار تعليمي؟ اضغط هنا

Inconspicuous Adversarial Patches for Fooling Image Recognition Systems on Mobile Devices

339   0   0.0 ( 0 )
 نشر من قبل Tao Bai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning based image recognition systems have been widely deployed on mobile devices in todays world. In recent studies, however, deep learning models are shown vulnerable to adversarial examples. One variant of adversarial examples, called adversarial patch, draws researchers attention due to its strong attack abilities. Though adversarial patches achieve high attack success rates, they are easily being detected because of the visual inconsistency between the patches and the original images. Besides, it usually requires a large amount of data for adversarial patch generation in the literature, which is computationally expensive and time-consuming. To tackle these challenges, we propose an approach to generate inconspicuous adversarial patches with one single image. In our approach, we first decide the patch locations basing on the perceptual sensitivity of victim models, then produce adversarial patches in a coarse-to-fine way by utilizing multiple-scale generators and discriminators. The patches are encouraged to be consistent with the background images with adversarial training while preserving strong attack abilities. Our approach shows the strong attack abilities in white-box settings and the excellent transferability in black-box settings through extensive experiments on various models with different architectures and training methods. Compared to other adversarial patches, our adversarial patches hold the most negligible risks to be detected and can evade human observations, which is supported by the illustrations of saliency maps and results of user evaluations. Lastly, we show that our adversarial patches can be applied in the physical world.



قيم البحث

اقرأ أيضاً

406 - Jinqi Luo , Tao Bai , Jun Zhao 2020
Deep neural networks have been shown vulnerable toadversarial patches, where exotic patterns can resultin models wrong prediction. Nevertheless, existing ap-proaches to adversarial patch generation hardly con-sider the contextual consistency between patches andthe image background, causing such patches to be eas-ily detected and adversarial attacks to fail. On the otherhand, these methods require a large amount of data fortraining, which is computationally expensive. To over-come these challenges, we propose an approach to gen-erate adversarial yet inconspicuous patches with onesingle image. In our approach, adversarial patches areproduced in a coarse-to-fine way with multiple scalesof generators and discriminators. Contextual informa-tion is encoded during the Min-Max training to makepatches consistent with surroundings. The selection ofpatch location is based on the perceptual sensitivity ofvictim models. Through extensive experiments, our ap-proach shows strong attacking ability in both the white-box and black-box setting. Experiments on saliency de-tection and user evaluation indicate that our adversar-ial patches can evade human observations, demonstratethe inconspicuousness of our approach. Lastly, we showthat our approach preserves the attack ability in thephysical world.
Face recognition is greatly improved by deep convolutional neural networks (CNNs). Recently, these face recognition models have been used for identity authentication in security sensitive applications. However, deep CNNs are vulnerable to adversarial patches, which are physically realizable and stealthy, raising new security concerns on the real-world applications of these models. In this paper, we evaluate the robustness of face recognition models using adversarial patches based on transferability, where the attacker has limited accessibility to the target models. First, we extend the existing transfer-based attack techniques to generate transferable adversarial patches. However, we observe that the transferability is sensitive to initialization and degrades when the perturbation magnitude is large, indicating the overfitting to the substitute models. Second, we propose to regularize the adversarial patches on the low dimensional data manifold. The manifold is represented by generative models pre-trained on legitimate human face images. Using face-like features as adversarial perturbations through optimization on the manifold, we show that the gaps between the responses of substitute models and the target models dramatically decrease, exhibiting a better transferability. Extensive digital world experiments are conducted to demonstrate the superiority of the proposed method in the black-box setting. We apply the proposed method in the physical world as well.
90 - Mark Lee , Zico Kolter 2019
In this paper, we demonstrate a physical adversarial patch attack against object detectors, notably the YOLOv3 detector. Unlike previous work on physical object detection attacks, which required the patch to overlap with the objects being misclassifi ed or avoiding detection, we show that a properly designed patch can suppress virtually all the detected objects in the image. That is, we can place the patch anywhere in the image, causing all existing objects in the image to be missed entirely by the detector, even those far away from the patch itself. This in turn opens up new lines of physical attacks against object detection systems, which require no modification of the objects in a scene. A demo of the system can be found at https://youtu.be/WXnQjbZ1e7Y.
The adversarial patch attack against image classification models aims to inject adversarially crafted pixels within a localized restricted image region (i.e., a patch) for inducing model misclassification. This attack can be realized in the physical world by printing and attaching the patch to the victim object and thus imposes a real-world threat to computer vision systems. To counter this threat, we propose PatchCleanser as a certifiably robust defense against adversarial patches that is compatible with any image classifier. In PatchCleanser, we perform two rounds of pixel masking on the input image to neutralize the effect of the adversarial patch. In the first round of masking, we apply a set of carefully generated masks to the input image and evaluate the model prediction on every masked image. If model predictions on all one-masked images reach a unanimous agreement, we output the agreed prediction label. Otherwise, we perform a second round of masking to settle the disagreement, in which we evaluate model predictions on two-masked images to robustly recover the correct prediction label. Notably, we can prove that our defense will always make correct predictions on certain images against any adaptive white-box attacker within our threat model, achieving certified robustness. We extensively evaluate our defense on the ImageNet, ImageNette, CIFAR-10, CIFAR-100, SVHN, and Flowers-102 datasets and demonstrate that our defense achieves similar clean accuracy as state-of-the-art classification models and also significantly improves certified robustness from prior works. Notably, our defense can achieve 83.8% top-1 clean accuracy and 60.4% top-1 certified robust accuracy against a 2%-pixel square patch anywhere on the 1000-class ImageNet dataset.
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversar ial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [28] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%), Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [20] which is trained with 3.5B Instagram images (~3000X more than ImageNet) and ~9.4X more parameters. Models are available at https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا