ﻻ يوجد ملخص باللغة العربية
We revisit in this work a model for repeating Fast Radio Bursts based of the release of energy provoked by the magnetic field dynamics affecting a magnetars crust. We address the basic needs of such a model by solving the propagation approximately, and quantify the energetics and the radiation by bunches of charges in the so-called {it charge starved} region in the magnetosphere. The (almost) simultaneous emission of newly detected X-rays from SGR 1935+2154 is tentatively associated to a reconnection behind the propagation. The strength of $f$-mode gravitational radiation excited by the event is quantified, and more detailed studies of the non-linear (spiky) soliton solutions suggested.
We discuss coherent free electron laser (FEL) operating during explosive reconnection events in magnetized pair plasma of magnetar magnetospheres. The model explains many salient features of Fast Radio Bursts/magnetars radio emission: temporal coinci
The activity of magnetars is powered by their intense and dynamic magnetic fields and has been proposed as the trigger to extragalactic Fast Radio Bursts. Here we estimate the frequency of crustal failures in young magnetars, by computing the magneti
We briefly review main observational properties of fast radio bursts (FRBs) and discuss two most popular hypothesis for the explanation of these enigmatic intense millisecond radio flashes. FRBs most probably originate on extragalactic distances, and
The repeating FRBs 180916.J0158 and 121102 are visible during periodically-occuring windows in time. We consider the constraints on internal magnetic fields and geometry if the cyclical behavior observed for FRB~180916.J0158 and FRB 121102 is due to
Lyutikov (2002) predicted radio emission from soft gamma-ray repeaters (SGRs) during their bursting activity. Detection of a Mega-Jansky radio burst in temporal coincidence with high energy bursts from a Galactic magnetar SGR 1935+2154 confirms that