ﻻ يوجد ملخص باللغة العربية
The activity of magnetars is powered by their intense and dynamic magnetic fields and has been proposed as the trigger to extragalactic Fast Radio Bursts. Here we estimate the frequency of crustal failures in young magnetars, by computing the magnetic stresses in detailed magneto-thermal simulations including Hall drift and Ohmic dissipation. The initial internal topology at birth is poorly known but is likely to be much more complex than a dipole. Thus, we explore a wide range of initial configurations, finding that the expected rate of crustal failures varies by orders of magnitude depending on the initial magnetic configuration. Our results show that this rate scales with the crustal magnetic energy, rather than with the often used surface value of the dipolar component related to the spin-down torque. The estimated frequency of crustal failures for a given dipolar component can vary by orders of magnitude for different initial conditions, depending on how much magnetic energy is distributed in the crustal non-dipolar components, likely dominant in newborn magnetars. The quantitative reliability of the expected event rate could be improved by a better treatment of the magnetic evolution in the core and the elastic/plastic crustal response, here not included. Regardless of that, our results are useful inputs in modelling the outburst rate of young Galactic magnetars, and their relation with the Fast Radio Bursts in our and other galaxies.
We revisit in this work a model for repeating Fast Radio Bursts based of the release of energy provoked by the magnetic field dynamics affecting a magnetars crust. We address the basic needs of such a model by solving the propagation approximately, a
Soft Gamma-ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are interpreted as young highly magnetized neutron stars (NSs). Their X-ray luminosity in quiescence, exceeding 10^{35} erg s^{-1} cannot be explained as due to cooling of a highly ma
We analyze the slow periodicities identified in burst sequences from FRB 121102 and FRB 180916 with periods of about 16 and 160 d, respectively, while also addressing the absence of any fast periodicity that might be associated with the spin of an un
Magnetars are young and highly magnetized neutron stars which display a wide array of X-ray activity including short bursts, large outbursts, giant flares and quasi-periodic oscillations, often coupled with interesting timing behavior including enhan
We represent noise strength analysis of Anomalous X-Ray Pulsars (AXPs) 4U 0142+61, 1RXS J170849.9-400910, 1E 1841-045, 1E 2259+586 and Soft Gamma Repeaters (SGRs) SGR J1833-0832, SWIFT J1822.3-1606 and SWIFT J1834.9-0846 together with the X-Ray binar