ﻻ يوجد ملخص باللغة العربية
We propose a physical theory underlying the temporal evolution of competing virus variants that relies on the existence of (quasi) fixed points capturing the large time scale invariance of the dynamics. To motivate our result we first modify the time-honoured compartmental models of the SIR type to account for the existence of competing variants and then show how their evolution can be naturally re-phrased in terms of flow equations ending at quasi fixed points. As the natural next step we employ (near) scale invariance to organise the time evolution of the competing variants within the effective description of the epidemic Renormalization Group framework. We test the resulting theory against the time evolution of COVID-19 virus variants that validate the theory empirically.
To better predict the dynamics of spread of COVID-19 epidemics, it is important not only to investigate the network of local and long-range contagious contacts, but also to understand the temporal dynamics of infectiousness and detectable symptoms. H
Several analytical models have been used in this work to describe the evolution of death cases arising from coronavirus (COVID-19). The Death or `D model is a simplified version of the SIR (susceptible-infected-recovered) model, which assumes no reco
An epidemiological model is developed for the spread of COVID-19 in South Africa. A variant of the classical compartmental SEIR model, called the SEIQRDP model, is used. As South Africa is still in the early phases of the global COVID-19 pandemic wit
This paper is concerned with nonlinear modeling and analysis of the COVID-19 pandemic currently ravaging the planet. There are two objectives: to arrive at an appropriate model that captures the collected data faithfully, and to use that as a basis t
In this work, we adapt the epidemiological SIR model to study the evolution of the dissemination of COVID-19 in Germany and Brazil (nationally, in the State of Paraiba, and in the City of Campina Grande). We prove the well posedness and the continuou