ترغب بنشر مسار تعليمي؟ اضغط هنا

Global analysis of the COVID-19 pandemic using simple epidemiological models

127   0   0.0 ( 0 )
 نشر من قبل Jose E Amaro
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several analytical models have been used in this work to describe the evolution of death cases arising from coronavirus (COVID-19). The Death or `D model is a simplified version of the SIR (susceptible-infected-recovered) model, which assumes no recovery over time, and allows for the transmission-dynamics equations to be solved analytically. The D-model can be extended to describe various focuses of infection, which may account for the original pandemic (D1), the lockdown (D2) and other effects (Dn). The evolution of the COVID-19 pandemic in several countries (China, Spain, Italy, France, UK, Iran, USA and Germany) shows a similar behavior in concord with the D-model trend, characterized by a rapid increase of death cases followed by a slow decline, which are affected by the earliness and efficiency of the lockdown effect. These results are in agreement with more accurate calculations using the extended SIR model with a parametrized solution and more sophisticated Monte Carlo grid simulations, which predict similar trends and indicate a common evolution of the pandemic with universal parameters.



قيم البحث

اقرأ أيضاً

COVID-19 pandemic represents an unprecedented global health crisis in the last 100 years. Its economic, social and health impact continues to grow and is likely to end up as one of the worst global disasters since the 1918 pandemic and the World Wars . Mathematical models have played an important role in the ongoing crisis; they have been used to inform public policies and have been instrumental in many of the social distancing measures that were instituted worldwide. In this article we review some of the important mathematical models used to support the ongoing planning and response efforts. These models differ in their use, their mathematical form and their scope.
This paper is concerned with nonlinear modeling and analysis of the COVID-19 pandemic currently ravaging the planet. There are two objectives: to arrive at an appropriate model that captures the collected data faithfully, and to use that as a basis t o explore the nonlinear behavior. We use a nonlinear SEIR (Susceptible, Exposed, Infectious & Removed) transmission model with added behavioral and government policy dynamics. We develop a genetic algorithm technique to identify key model parameters employing COVID19 data from South Korea. Stability, bifurcations and dynamic behavior are analyzed. Parametric analysis reveals conditions for sustained epidemic equilibria to occur. This work points to the value of nonlinear dynamic analysis in pandemic modeling and demonstrates the dramatic influence of social and government behavior on disease dynamics.
130 - L.E. Olivier , I.K. Craig 2020
An epidemiological model is developed for the spread of COVID-19 in South Africa. A variant of the classical compartmental SEIR model, called the SEIQRDP model, is used. As South Africa is still in the early phases of the global COVID-19 pandemic wit h the confirmed infectious cases not having peaked, the SEIQRDP model is first parameterized on data for Germany, Italy, and South Korea - countries for which the number of infectious cases are well past their peaks. Good fits are achieved with reasonable predictions of where the number of COVID-19 confirmed cases, deaths, and recovered cases will end up and by when. South African data for the period from 23 March to 8 May 2020 is then used to obtain SEIQRDP model parameters. It is found that the model fits the initial disease progression well, but that the long-term predictive capability of the model is rather poor. The South African SEIQRDP model is subsequently recalculated with the basic reproduction number constrained to reported values. The resulting model fits the data well, and long-term predictions appear to be reasonable. The South African SEIQRDP model predicts that the peak in the number of confirmed infectious individuals will occur at the end of October 2020, and that the total number of deaths will range from about 10,000 to 90,000, with a nominal value of about 22,000. All of these predictions are heavily dependent on the disease control measures in place, and the adherence to these measures. These predictions are further shown to be particularly sensitive to parameters used to determine the basic reproduction number. The future aim is to use a feedback control approach together with the South African SEIQRDP model to determine the epidemiological impact of varying lockdown levels proposed by the South African Government.
In late-2020, many countries around the world faced another surge in number of confirmed cases of COVID-19, including United Kingdom, Canada, Brazil, United States, etc., which resulted in a large nationwide and even worldwide wave. While there have been indications that precaution fatigue could be a key factor, no scientific evidence has been provided so far. We used a stochastic metapopulation model with a hierarchical structure and fitted the model to the positive cases in the US from the start of outbreak to the end of 2020. We incorporated non-pharmaceutical interventions (NPIs) into this model by assuming that the precaution strength grows with positive cases and studied two types of pandemic fatigue. We found that people in most states and in the whole US respond to the outbreak in a sublinear manner (with exponent k=0.5), while only three states (Massachusetts, New York and New Jersey) have linear reaction (k=1). Case fatigue (decline in peoples vigilance to positive cases) is responsible for 58% of cases, while precaution fatigue (decay of maximal fraction of vigilant group) accounts for 26% cases. If there were no pandemic fatigue (no case fatigue and no precaution fatigue), total positive cases would have reduced by 68% on average. Our study shows that pandemic fatigue is the major cause of the worsening situation of COVID-19 in United States. Reduced vigilance is responsible for most positive cases, and higher mortality rate tends to push local people to react to the outbreak faster and maintain vigilant for longer time.
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person i s broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا