ﻻ يوجد ملخص باللغة العربية
We investigate the inflationary consequences of the oscillating dark energy model proposed by Tian [href{https://doi.org/10.1103/PhysRevD.101.063531}{Phys. Rev. D {bf 101}, 063531 (2020)}], which aims to solve the cosmological coincidence problem with multi-accelerating Universe (MAU). We point out that the inflationary dynamics belong to slow-roll inflation. The spectral index of scalar perturbations and the tensor-to-scalar ratio $r$ are shown to be consistent with current textit{Planck} measurements. Especially, this model predicts $rsim10^{-7}$, which is far below the observation limits. This result motivates us to explore the smallness of $r$ in the general MAU. We propose a quintessential generalization of the original model and prove $r<0.01$ in general. The null detection to date of primordial gravitational waves provides a circumstantial evidence for the MAU. After the end of inflation, the scalar field rolls toward infinity instead of a local minimum, and meanwhile its equation of state is oscillating with an average value larger than $1/3$. In this framework, we show that gravitational particle creation at the end of inflation is capable of reheating the Universe.
We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter $epsilon(phi)$ and its derivatives $epsilon^{prime }(phi)$ and $epsilon^{primep
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories ass
The form of the inflationary potential is severely restricted if one requires that it be natural in the technical sense, i.e. terms of unrelated origin are not required to be correlated. We determine the constraints on observables that are implied in
In a recent work, we had constructed a model consisting of two fields---a canonical scalar field and a non-canonical ghost field---that had sourced a symmetric matter bounce scenario. The model had involved only one parameter, viz. the scale associat
This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole Universe, plus a cosmological constant term. By using a compilation of 51 $