ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral-Spatial Graph Reasoning Network for Hyperspectral Image Classification

144   0   0.0 ( 0 )
 نشر من قبل Di Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a spectral-spatial graph reasoning network (SSGRN) for hyperspectral image (HSI) classification. Concretely, this network contains two parts that separately named spatial graph reasoning subnetwork (SAGRN) and spectral graph reasoning subnetwork (SEGRN) to capture the spatial and spectral graph contexts, respectively. Different from the previous approaches implementing superpixel segmentation on the original image or attempting to obtain the category features under the guide of label image, we perform the superpixel segmentation on intermediate features of the network to adaptively produce the homogeneous regions to get the effective descriptors. Then, we adopt a similar idea in spectral part that reasonably aggregating the channels to generate spectral descriptors for spectral graph contexts capturing. All graph reasoning procedures in SAGRN and SEGRN are achieved through graph convolution. To guarantee the global perception ability of the proposed methods, all adjacent matrices in graph reasoning are obtained with the help of non-local self-attention mechanism. At last, by combining the extracted spatial and spectral graph contexts, we obtain the SSGRN to achieve a high accuracy classification. Extensive quantitative and qualitative experiments on three public HSI benchmarks demonstrate the competitiveness of the proposed methods compared with other state-of-the-art approaches.



قيم البحث

اقرأ أيضاً

The inclusion of spatial information into spectral classifiers for fine-resolution hyperspectral imagery has led to significant improvements in terms of classification performance. The task of spectral-spatial hyperspectral image classification has r emained challenging because of high intraclass spectrum variability and low interclass spectral variability. This fact has made the extraction of spatial information highly active. In this work, a novel hyperspectral image classification framework using the fusion of dual spatial information is proposed, in which the dual spatial information is built by both exploiting pre-processing feature extraction and post-processing spatial optimization. In the feature extraction stage, an adaptive texture smoothing method is proposed to construct the structural profile (SP), which makes it possible to precisely extract discriminative features from hyperspectral images. The SP extraction method is used here for the first time in the remote sensing community. Then, the extracted SP is fed into a spectral classifier. In the spatial optimization stage, a pixel-level classifier is used to obtain the class probability followed by an extended random walker-based spatial optimization technique. Finally, a decision fusion rule is utilized to fuse the class probabilities obtained by the two different stages. Experiments performed on three data sets from different scenes illustrate that the proposed method can outperform other state-of-the-art classification techniques. In addition, the proposed feature extraction method, i.e., SP, can effectively improve the discrimination between different land covers.
Hyperspectral image (HSI) clustering, which aims at dividing hyperspectral pixels into clusters, has drawn significant attention in practical applications. Recently, many graph-based clustering methods, which construct an adjacent graph to model the data relationship, have shown dominant performance. However, the high dimensionality of HSI data makes it hard to construct the pairwise adjacent graph. Besides, abundant spatial structures are often overlooked during the clustering procedure. In order to better handle the high dimensionality problem and preserve the spatial structures, this paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering. The SSCAG has the following contributions: 1) the anchor graph-based strategy is used to construct a tractable large graph for HSI data, which effectively exploits all data points and reduces the computational complexity; 2) a new similarity metric is presented to embed the spatial-spectral information into the combined adjacent graph, which can mine the intrinsic property structure of HSI data; 3) an effective neighbors assignment strategy is adopted in the optimization, which performs the singular value decomposition (SVD) on the adjacent graph to get solutions efficiently. Extensive experiments on three public HSI datasets show that the proposed SSCAG is competitive against the state-of-the-art approaches.
Deep learning based landcover classification algorithms have recently been proposed in literature. In hyperspectral images (HSI) they face the challenges of large dimensionality, spatial variability of spectral signatures and scarcity of labeled data . In this article we propose an end-to-end deep learning architecture that extracts band specific spectral-spatial features and performs landcover classification. The architecture has fewer independent connection weights and thus requires lesser number of training data. The method is found to outperform the highest reported accuracies on popular hyperspectral image data sets.
Recent researches on panoptic segmentation resort to a single end-to-end network to combine the tasks of instance segmentation and semantic segmentation. However, prior models only unified the two related tasks at the architectural level via a multi- branch scheme or revealed the underlying correlation between them by unidirectional feature fusion, which disregards the explicit semantic and co-occurrence relations among objects and background. Inspired by the fact that context information is critical to recognize and localize the objects, and inclusive object details are significant to parse the background scene, we thus investigate on explicitly modeling the correlations between object and background to achieve a holistic understanding of an image in the panoptic segmentation task. We introduce a Bidirectional Graph Reasoning Network (BGRNet), which incorporates graph structure into the conventional panoptic segmentation network to mine the intra-modular and intermodular relations within and between foreground things and background stuff classes. In particular, BGRNet first constructs image-specific graphs in both instance and semantic segmentation branches that enable flexible reasoning at the proposal level and class level, respectively. To establish the correlations between separate branches and fully leverage the complementary relations between things and stuff, we propose a Bidirectional Graph Connection Module to diffuse information across branches in a learnable fashion. Experimental results demonstrate the superiority of our BGRNet that achieves the new state-of-the-art performance on challenging COCO and ADE20K panoptic segmentation benchmarks.
In recent years, deep convolutional neural networks (CNNs) have shown impressive ability to represent hyperspectral images (HSIs) and achieved encouraging results in HSI classification. However, the existing CNN-based models operate at the patch-leve l, in which pixel is separately classified into classes using a patch of images around it. This patch-level classification will lead to a large number of repeated calculations, and it is difficult to determine the appropriate patch size that is beneficial to classification accuracy. In addition, the conventional CNN models operate convolutions with local receptive fields, which cause failures in modeling contextual spatial information. To overcome the aforementioned limitations, we propose a novel end-to-end, pixels-to-pixels fully convolutional spatial propagation network (FCSPN) for HSI classification. Our FCSPN consists of a 3D fully convolution network (3D-FCN) and a convolutional spatial propagation network (CSPN). Specifically, the 3D-FCN is firstly introduced for reliable preliminary classification, in which a novel dual separable residual (DSR) unit is proposed to effectively capture spectral and spatial information simultaneously with fewer parameters. Moreover, the channel-wise attention mechanism is adapted in the 3D-FCN to grasp the most informative channels from redundant channel information. Finally, the CSPN is introduced to capture the spatial correlations of HSI via learning a local linear spatial propagation, which allows maintaining the HSI spatial consistency and further refining the classification results. Experimental results on three HSI benchmark datasets demonstrate that the proposed FCSPN achieves state-of-the-art performance on HSI classification.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا