ﻻ يوجد ملخص باللغة العربية
Here we present new - and, nevertheless, last - mid-infrared (mid-IR) data for supernovae (SNe) based on measurements with the Spitzer Space Telescope. Comparing our recent 3.6 and 4.5 $mu$m photometry with previously published mid-IR and further multiwavelength datasets, we were able to draw some conclusions about the origin and heating mechanism of the dust in these SNe or in their environments, as well as on possible connection with circumstellar matter (CSM) originating from pre-explosion mass-loss events in the progenitor stars. We also present new results regarding both certain SN classes and single objects. We highlight the mid-IR homogeneity of SNe Ia-CSM, which may be a hint of their common progenitor type and of their basically uniform circumstellar environments. Regarding single objects, it is worth highlighting the late-time interacting Type Ib SNe 2003gk and 2004dk, for which we present the first-ever mid-IR data, which seem to be consistent with clues of ongoing CSM interaction detected in other wavelength ranges. Our current study suggests that long-term mid-IR follow-up observations play a key role in a better understanding of both pre- and post-explosion processes in SNe and their environments. While Spitzer is not available any more, the expected unique data from the James Webb Space Telescope, as well as long-term near-IR follow-up observations of dusty SNe, can bring us closer to the hidden details of this topic.
We examine simulations of core-collapse supernovae in spherical symmetry. Our model is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. We discuss the different supernova phases, including the long
We study the occurrence of delayed SNe~Ia in the single degenerate (SD) scenario. We assume that a massive carbon-oxygen (CO) white dwarf (WD) accretes matter coming from a companion star, making it to spin at the critical rate. We assume uniform rot
The nature of the progenitors and explosion mechanism of Type Iax supernovae (SNe Iax) remain a mystery. The single-degenerate (SD) systems that involve the incomplete pure deflagration explosions of near-Chandrasekhar-mass white dwarfs (WDs) have re
We present 5 years of optical and infrared data of the black hole candidate MAXI J1659-152 covering its 2010 outburst, decay and quiescence. Combining optical data taken during the outburst decay, we obtain an orbital period of 2.414 $pm$ 0.005 h, in
A number of Type I (hydrogenless) superluminous supernova (SLSN) events have been discovered recently. However, their nature remains debatable. One of the most promising ideas is the shock-interaction mechanism, but only simplified semi-analytical mo