ترغب بنشر مسار تعليمي؟ اضغط هنا

The long-term optical evolution of the black hole candidate MAXI J1659-152

73   0   0.0 ( 0 )
 نشر من قبل Jesus M. Corral-Santana
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 5 years of optical and infrared data of the black hole candidate MAXI J1659-152 covering its 2010 outburst, decay and quiescence. Combining optical data taken during the outburst decay, we obtain an orbital period of 2.414 $pm$ 0.005 h, in perfect agreement with the value previously measured from X-ray dips. In addition, we detect a clear H$alpha$ excess in MAXI J1659-152 with data taken during the outburst decay. We also detect a single hump modulation most likely produced by irradiation. Assuming that the maximum occurs at orbital phase 0.5, we constrain the phase of the X-ray dips to be ~ 0.65. We also detect the quiescent optical counterpart at r = 24.20 $pm$ 0.08, I = 23.32 $pm$ 0.02 and H = 20.7 $pm$ 0.1. These magnitudes provide colour indices implying an M2-M5 donor star assuming 60% contribution from a disc component in the r-band.



قيم البحث

اقرأ أيضاً

170 - E. Kuulkers 2011
Following the detection of a bright new X-ray source, MAXI J1659-152, a series of observations was triggered with almost all currently flying high-energy missions. We report here on XMM-Newton, INTEGRAL and RXTE observations during the early phase of the X-ray outburst of this transient black-hole candidate. We confirm the dipping nature in the X-ray light curves. We find that the dips recur on a period of 2.4139+/-0.0005 hrs, and interpret this as the orbital period of the system. It is thus the shortest period black-hole X-ray binary known to date. Using the various observables, we derive the properties of the source. The inclination of the accretion disk with respect to the line of sight is estimated to be 60-75 degrees. The companion star to the black hole is possibly a M5 dwarf star, with a mass and radius of about 0.15 M_sun and 0.23 R_sun, respectively. The system is rather compact (orbital separation is about 1.35 R_sun) and is located at a distance of roughly 7 kpc. In quiescence, MAXI J1659-152 is expected to be optically faint, about 28 mag in the V-band.
We report on X-ray spectral and timing results of the new black hole candidate (BHC) MAXI J1659-152 with the orbital period of 2.41 hours (shortest among BHCs) in the 2010 outburst from 65 Rossi X-ray Timing Explorer (RXTE) observations and 8 simulta neous Swift and RXTE observations. According to the definitions of the spectral states in Remillard & McClintock (2006), most of the observations have been classified into the intermediate state. All the X-ray broadband spectra can be modeled by a multi-color disk plus a power-law with an exponential cutoff or a multi-color disk plus a Comptonization component. During the initial phase of the outburst, a high energy cutoff was visible at 30-40 keV. The innermost radius of the disk gradually decreased by a factor of more than 3 from the onset of the outburst and reached a constant value of 35 d_10 cos i^-1/2 km, where d_10 is the distance in units of 10 kpc and $i$ is the inclination. The type-C quasi-periodic oscillation (QPO) frequency varied from 1.6 Hz to 7.3 Hz in association with a change of the innermost radius, while the innermost radius remained constant during the type-B QPO detections at 1.6-4.1 Hz. Hence, we suggest that the origin of the type-B QPOs is different from that of type-C QPOs, the latter of which would originate from the disk truncation radius. Assuming the constant innermost radius in the latter phase of the outburst as the innermost stable circular orbit, the black hole mass in MAXI J1659-152 is estimated to be 3.6-8.0 M_solar for a distance of 5.3-8.6 kpc and an inclination angle of 60-75 degrees.
MAXI J1659-152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. Dips in the X-ray light curves h ave revealed that MAXI J1659-152 is the shortest period black hole candidate identified to date. Here we present the results of a large observing campaign at radio, sub-millimeter, near-infrared (nIR), optical and ultraviolet (UV) wavelengths. We have combined this very rich data set with the available X-ray observations to compile a broadband picture of the evolution of this outburst. We have performed broadband spectral modeling, demonstrating the presence of a spectral break at radio frequencies and a relationship between the radio spectrum and X-ray states. Also, we have determined physical parameters of the accretion disk and put them into context with respect to the other parameters of the binary system. Finally, we have investigated the radio-X-ray and nIR/optical/UV-X-ray correlations up to ~3 years after the outburst onset to examine the link between the jet and the accretion disk, and found that there is no significant jet contribution to the nIR emission when the source is in the soft or intermediate X-ray spectral state, consistent with our detection of the jet break at radio frequencies during these states.
We present the first results on the new black hole candidate, MAXI J1305-704, observed by MAXI/GSC. The new X-ray transient, named as MAXI J1305-704, was first detected by the MAXI-GSC all-sky survey on 2012 April 9 in the direction to the outer Gala ctic bulge at (l,b)=(304.2deg,-7.6deg). The Swift/XRT follow-up observation confirmed the uncatalogued point source and localized to the position at (13h06m56s.44,-70d274.91). The source continued the activity for about five months until 2012 August. The MAXI/GSC light curve in the 2--10 keV band and the variation of the hardness ratio of the 4-10 keV to the 2-4 keV flux revealed the hard-to-soft state transition on the the sixth day (April 15) in the brightening phase and the soft-to-hard transition on the ~60th day (June 15) in the decay phase. The luminosity at the initial hard-to-soft transition was significantly higher than that at the soft-to-hard transition in the decay phase. The X-ray spectra in the hard state are represented by a single power-law model with a photon index of ~2.0, while those in the soft state need such an additional soft component as represented by a multi-color disk blackbody emission with an inner disk temperature ~0.5--1.2 keV. All the obtained features support the source identification of a Galactic black-hole binary located in the Galactic bulge.
The black hole candidate and X-ray binary MAXI J1535-571 was discovered in September 2017. During the decay of its discovery outburst, and before returning to quiescence, the source underwent at least four reflaring events, with peak luminosities of $sim$10$^{35-36}$ erg s$^{-1}$ (d/4.1 kpc)$^2$. To investigate the nature of these flares, we analysed a sample of NICER observations taken with almost daily cadence. In this work we present the detailed spectral and timing analysis of the evolution of the four reflares. The higher sensitivity of NICER at lower energies, in comparison with other X-ray detectors, allowed us to constrain the disc component of the spectrum at $sim$0.5 keV. We found that during each reflare the source appears to trace out a q-shaped track in the hardness-intensity diagram similar to those observed in black hole binaries during full outbursts. MAXI J1535-571 transits between the hard state (valleys) and softer states (peaks) during these flares. Moreover, the Comptonised component is undetected at the peak of the first reflare, while the disc component is undetected during the valleys. Assuming the most likely distance of 4.1 kpc, we find that the hard-to-soft transitions take place at the lowest luminosities ever observed in a black hole transient, while the soft-to-hard transitions occur at some of the lowest luminosities ever reported for such systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا