ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-frequency integrated radio spectra of diffuse, steep-spectrum sources in galaxy clusters: palaeontology with the MWA and ASKAP

80   0   0.0 ( 0 )
 نشر من قبل Stefan W. Duchesne
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy clusters have been found to host a range of diffuse, non-thermal emission components, generally with steep, power law spectra. In this work we report on the detection and follow-up of radio halos, relics, remnant radio galaxies, and other fossil radio plasmas in Southern Sky galaxy clusters using the Murchison Widefield Array and the Australian Square Kilometre Array Pathfinder. We make use of the frequency coverage between the two radio interferometers - from 88 to $sim 900$ MHz - to characterise the integrated spectra of these sources within this frequency range. Highlights from the sample include the detection of a double relic system in Abell 3186, a mini-halo in RXC J0137.2-0912, a candidate halo and relic in Abell 3399, and a complex multi-episodic head-tail radio galaxy in Abell 3164. We compare this selection of sources and candidates to the literature sample, finding sources consistent with established radio power-cluster mass scaling relations. Finally, we use the low-frequency integrated spectral index, $alpha$ ($S_ u propto u^alpha$), of the detected sample of cluster remnants and fossil sources to compare with samples of known halos, relics, remnants and fossils to investigate a possible link between their electron populations. We find the distributions of $alpha$ to be consistent with relic and halo emission generated by seed electrons that originated in fossil or remnant sources. However, the present sample sizes are insufficient to rule out other scenarios.



قيم البحث

اقرأ أيضاً

191 - Simona Giacintucci 2011
The knowledge of the origin and statistical properties of diffuse radio emission in galaxy clusters has appreciably improved thanks to the GMRT Radio Halo Survey, a project based on 610 MHz observations of clusters belonging to a statistically comple te sample. However, the spectral properties of cluster diffuse sources are still poorly known and uncertain. High sensitivity and multi-resolution observations at low frequency ($le$0.3 GHz) are needed for accurate spectral studies. Here, GMRT images at 325 MHz are presented for the clusters A2744, A1300, A1758N and A781, all hosting cluster-scale diffuse emission in the form of a giant halo and/or relic. These observations are part of a new observational campaign to follow up with the GMRT at 150, 235 and 325 MHz all diffuse radio sources in the cluster sample of the GMRT Radio Halo Survey and obtain detailed information on their radio spectral properties.
We report on the detection of a giant radio halo in the cluster Abell 3404 as well as confirmation of the radio halo observed in Abell 141 (with linear extents $sim 770$ kpc and $sim 850$ kpc, respectively). We use the Murchison Widefield Array (MWA) in conjunction with the Australian Square Kilometre Array Pathfinder (ASKAP) and the Australia Telescope Compact Array (ATCA) to characterise the emission and intervening radio sources from $sim100$-$1000$ MHz; power law models are fit to the spectral energy distributions with spectral indices $alpha_{88}^{1110} = -1.66 pm 0.07$ and $alpha_{88}^{944} = -1.06 pm 0.09$ for the radio halos in Abell 3404 and Abell 141, respectively. We find strong correlation between radio and X-ray surface brightness for Abell~3404 but little correlation for Abell~141. We note each cluster has an atypical morphology for a radio-halo--hosting cluster, with Abell 141 having been previously reported to be in a pre-merging state, and Abell 3404 is largely relaxed with only minor evidence for a disturbed morphology. We find that the radio halo power is consistent with the current radio halo sample and $P_ u$-$M$ scaling relations, but note that the radio halo in Abell 3404 is an ultra-steep-spectrum radio halo (USSRH) and, as with other USSRHs lies slightly below the best-fit $P_{1.4}$-$M$ relation. We find that an updated scaling relation is consistent with previous results and shifting the frequency to 150 MHz does not significantly alter the best-fit relations with a sample of 86 radio halos. We suggest that the USSRH halo in Abell 3404 represents the faint class of radio halos that will be found in clusters undergoing weak mergers.
Compact steep-spectrum (CSS) and peaked spectrum (PS) radio sources are compact, powerful radio sources. The multi-frequency observational properties and current theories are reviewed with emphasis on developments since the earlier review of ODea (19 98). There are three main hypotheses for the nature of PS and CSS sources. (1) The PS sources might be very young radio galaxies which will evolve into CSS sources on their way to becoming large radio galaxies. (2) The PS and CSS sources might be compact because they are confined (and enhanced in radio power) by interaction with dense gas in their environments. (3) Alternately, the PS sources might be transient or intermittent sources. Each of these hypotheses may apply to individual objects. The relative number in each population will have significant implications for the radio galaxy paradigm. Proper motion studies over long time baselines have helped determine hotspot speeds for over three dozen sources and establish that these are young objects. Multifrequency polarization observations have demonstrated that many CSS/PS sources are embedded in a dense interstellar medium and vigorously interacting with it. The detection of emission line gas aligned with the radio source, and blue-shifted HI absorption and [OIII] emission lines indicates that AGN feedback is present in these objects -- possibly driven by the radio source. CSS/PS sources with evidence of episodic AGN over a large range of time-scales have been discussed. The review closes with a discussion of open questions and prospects for the future.
With Low-Frequency Array (LOFAR) observations, we have discovered a diverse assembly of steep spectrum emission that is apparently associated with the intra cluster medium (ICM) of the merging galaxy cluster Abell 2034. Such a rich variety of complex emission associated with the ICM has been observed in few other clusters. This not only indicates that Abell 2034 is a more interesting and complex system than previously thought but it also demonstrates the importance of sensitive and high-resolution, low-frequency observations. These observations can reveal emission from relativistic particles which have been accelerated to sufficient energy to produce observable emission or have had their high energy maintained by mechanisms in the ICM. The most prominent feature in our maps is a bright bulb of emission connected to two steep spectrum filamentary structures, the longest of which extends perpendicular to the merger axis for 0.5Mpc across the south of the cluster. The origin of these objects is unclear, with no shock detected in the X-ray images and no obvious connection with cluster galaxies or AGNs. We also find that the X-ray bright region of the cluster coincides with a giant radio halo with an irregular morphology and a very steep spectrum. In addition, the cluster hosts up to three possible radio relics, which are misaligned with the cluster X-ray emission. Finally, we have identified multiple regions of emission with a very steep spectral index that seem to be associated with either tailed radio galaxies or a shock.
Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investi gate the evolutionary properties of the non-thermal cluster emission using two statistically complete samples at z > 0.3. We obtained short JVLA observations at L-band of the statistically complete sample of very X-ray luminous clusters from the Massive Cluster Survey (MACS) presented by Ebeling et al. (2010), and redshift range 0.3 - 0.5. We add to this list the complete sample of the 12 most distant MACS clusters (z > 0.5) presented in Ebeling et al. (2007). Most clusters show evidence of emission in the radio regime. We present the radio properties of all clusters in our sample and show images of newly detected diffuse sources. A radio halo is detected in 19 clusters, and five clusters contain a relic source. Most of the brightest cluster galaxies (BCG) in relaxed clusters show radio emission with powers typical of FRII radio galaxies, and some are surrounded by a radio mini-halo. The high frequency of radio emission from the BCG in relaxed clusters suggests that BCG feedback mechanisms are in place already at z about 0.6. The properties of radio halos and the small number of detected relics suggest redshift evolution in the properties of diffuse sources. The radio power (and size) of radio halos could be related to the number of past merger events in the history of the system. In this scenario, the presence of a giant and high-power radio halo is indicative of an evolved system with a large number of past major mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا