ﻻ يوجد ملخص باللغة العربية
The knowledge of the origin and statistical properties of diffuse radio emission in galaxy clusters has appreciably improved thanks to the GMRT Radio Halo Survey, a project based on 610 MHz observations of clusters belonging to a statistically complete sample. However, the spectral properties of cluster diffuse sources are still poorly known and uncertain. High sensitivity and multi-resolution observations at low frequency ($le$0.3 GHz) are needed for accurate spectral studies. Here, GMRT images at 325 MHz are presented for the clusters A2744, A1300, A1758N and A781, all hosting cluster-scale diffuse emission in the form of a giant halo and/or relic. These observations are part of a new observational campaign to follow up with the GMRT at 150, 235 and 325 MHz all diffuse radio sources in the cluster sample of the GMRT Radio Halo Survey and obtain detailed information on their radio spectral properties.
The presence of non-thermal electrons and large scale magnetic fields in the intra-cluster medium (ICM) is known through the detection of mega-parsec (Mpc) scale diffuse radio synchrotron emission. Although a significant amount of progress in finding
Galaxy clusters have been found to host a range of diffuse, non-thermal emission components, generally with steep, power law spectra. In this work we report on the detection and follow-up of radio halos, relics, remnant radio galaxies, and other foss
Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investi
A fraction of galaxy clusters host diffuse radio sources called radio halos, radio relics and mini-halos. We present the sample and first results from the Extended GMRT Radio Halo Survey (EGRHS)- an extension of the GMRT Radio Halo Survey (GRHS, Vent
The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, consid