ﻻ يوجد ملخص باللغة العربية
Recent discoveries of charge order and electronic nematic order in the iron-based superconductors and cuprates have pointed towards the possibility of nematic and charge fluctuations playing a role in the enhancement of superconductivity. The Ba1-xSrxNi2As2 system, closely related in structure to the BaFe2As2 system, has recently been shown to exhibit both types of ordering without the presence of any magnetic order. We report single crystal X-ray diffraction, resistance transport measurements, and magnetization of BaSrLate, providing evidence that the previously reported incommensurate charge order with wavevector $(0,0.28,0)_{tet}$ in the tetragonal state of BaNi~vanishes by this concentration of Sr substitution together with nematic order. Our measurements suggest that the nematic and incommensurate charge orders are closely tied in the tetragonal state, and show that the $(0,0.33,0)_{tri}$ charge ordering in the triclinic phase of BaNi2As2 evolves to become $(0,0.5,0)_{tri}$ charge ordering at $x$=0.65 before vanishing at $x$=0.71.
We study a spin $S$ quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large $S$ and large $N$ methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature sy
It is shown by detailed inelastic neutron scattering experiments that the gapped collective magnetic excitation of the unconventional superconductor CeCoIn$_{5}$, the spin resonance mode, is incommensurate and that the corresponding fluctuations are
Novel electronic states resulting from entangled spin and orbital degrees of freedom are hallmarks of strongly correlated f-electron systems. A spectacular example is the so-called hidden-order phase transition in the heavy-electron metal URu2Si2, wh
There are increasing indications that superconductivity competes with other orders in cuprate superconductors, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimens
The momentum dependence of the nematic order parameter is an important ingredient in the microscopic description of iron-based high-temperature superconductors. While recent reports on FeSe indicate that the nematic order parameter changes sign betwe