ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Electron Nematic Order in LaOFeAs

161   0   0.0 ( 0 )
 نشر من قبل Jiangping Hu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a spin $S$ quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large $S$ and large $N$ methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature symmetric phase to a narrow region of intermediate ``nematic phase, and then to a low temperature spin ordered phase. Identifying phases by their broken symmetries, these phases correspond precisely to the sequence of structural (tetragonal to monoclinic) and magnetic transitions that have been recently revealed in neutron scattering studies of LaOFeAs. The structural transition can thus be identified with the existence of incipient (``fluctuating) magnetic order.



قيم البحث

اقرأ أيضاً

133 - H. Ikeda , M.-T. Suzuki , R. Arita 2012
Novel electronic states resulting from entangled spin and orbital degrees of freedom are hallmarks of strongly correlated f-electron systems. A spectacular example is the so-called hidden-order phase transition in the heavy-electron metal URu2Si2, wh ich is characterized by the huge amount of entropy lost at T_{HO}=17.5K. However, no evidence of magnetic/structural phase transition has been found below T_{HO} so far. The origin of the hidden-order phase transition has been a long-standing mystery in condensed matter physics. Here, based on a first-principles theoretical approach, we examine the complete set of multipole correlations allowed in this material. The results uncover that the hidden-order parameter is a rank-5 multipole (dotriacontapole) order with nematic E^- symmetry, which exhibits staggered pseudospin moments along the [110] direction. This naturally provides comprehensive explanations of all key features in the hidden-order phase including anisotropic magnetic excitations, nearly degenerate antiferromagnetic-ordered state, and spontaneous rotational-symmetry breaking.
Recent discoveries of charge order and electronic nematic order in the iron-based superconductors and cuprates have pointed towards the possibility of nematic and charge fluctuations playing a role in the enhancement of superconductivity. The Ba1-xSr xNi2As2 system, closely related in structure to the BaFe2As2 system, has recently been shown to exhibit both types of ordering without the presence of any magnetic order. We report single crystal X-ray diffraction, resistance transport measurements, and magnetization of BaSrLate, providing evidence that the previously reported incommensurate charge order with wavevector $(0,0.28,0)_{tet}$ in the tetragonal state of BaNi~vanishes by this concentration of Sr substitution together with nematic order. Our measurements suggest that the nematic and incommensurate charge orders are closely tied in the tetragonal state, and show that the $(0,0.33,0)_{tri}$ charge ordering in the triclinic phase of BaNi2As2 evolves to become $(0,0.5,0)_{tri}$ charge ordering at $x$=0.65 before vanishing at $x$=0.71.
130 - Yejin Huh , Subir Sachdev 2008
We examine the quantum theory of the spontaneous breaking of lattice rotation symmetry in d-wave superconductors on the square lattice. This is described by a field theory of an Ising nematic order parameter coupled to the gapless fermionic quasipart icles. We determine the structure of the renormalization group to all orders in a 1/N_f expansion, where N_f is the number of fermion spin components. Asymptotically exact results are obtained for the quantum critical theory in which, as in the large N_f theory, the nematic order has a large anomalous dimension, and the fermion spectral functions are highly anisotropic.
102 - H. Pfau , S. D. Chen , M. Yi 2019
The momentum dependence of the nematic order parameter is an important ingredient in the microscopic description of iron-based high-temperature superconductors. While recent reports on FeSe indicate that the nematic order parameter changes sign betwe en electron and hole bands, detailed knowledge is still missing for other compounds. Combining angle-resolved photoemission spectroscopy (ARPES) with uniaxial strain tuning, we measure the nematic band splitting in both FeSe and BaFe$_2$As$_2$ without interference from either twinning or magnetic order. We find that the nematic order parameter exhibits the same momentum dependence in both compounds with a sign change between the Brillouin center and the corner. This suggests that the same microscopic mechanism drives the nematic order in spite of the very different phase diagrams.
During the last decade, translational and rotational symmetry-breaking phases -- density wave order and electronic nematicity -- have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprat e superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant x-ray scattering in a cuprate high-temperature superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_{4}$ (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3$d$ orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature $T^{*}$ or increasing doping through the pseudogap critical point, $p^{*}$. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا