ﻻ يوجد ملخص باللغة العربية
An open challenge in physics is to expand the frontiers of the validity of quantum mechanics by evidencing nonclassicality of the centre of mass state of a macroscopic object. Yet another equally important task is to evidence the essential nonclassicality of the interactions which act between macroscopic objects. Here we introduce a new tool to meet these challenges: massive spatial qubits. In particular, we show that if two distinct localized states of a mass are used as the $|0rangle$ and $|1rangle$ states of a qubit, then we can measure this encoded spatial qubit with a high fidelity in the $sigma_x, sigma_y$ and $sigma_z$ bases simply by measuring its position after different durations of free evolution. We show how this technique can be used to reveal an irreducible nonclassicality through a Bell-inequality violation arising from the entanglement of the centre of mass of a nano-crystal with its spin in a Stern-Gerlach setup. Secondly, we show how our methodology, in conjuction with the Casimir interaction, offers a powerful method to create and certify non-Gaussian entanglement between two neutral nano-objects. Fundamentally, the generation of such an entanglement provides an empirical means for demonstrating an inherent quantumness of the Casimir interaction.
We find a sufficient condition to imprint the single-mode bosonic phase-space nonclassicality onto a bipartite state as modal entanglement and vice versa using an arbitrary beam splitter. Surprisingly, the entanglement produced or detected in this wa
A beam splitter is a simple, readily available device which can act to entangle the output optical fields. We show that a necessary condition for the fields at the output of the beam splitter to be entangled is that the pure input states exhibit nonc
We theoretically propose and experimentally demonstrate a nonclassicality test of single-mode field in phase space, which has an analogy with the nonlocality test proposed by Banaszek and Wodkiewicz [Phys. Rev. Lett. 82, 2009 (1999)]. Our approach to
Two quantum Macro-states and their Macroscopic Quantum Superpositions (MQS) localized in two far apart, space - like separated sites can be non-locally correlated by any entangled couple of single-particles having interacted in the past. This novel M
Quantum entanglement between two or more bipartite entities is a core concept in quantum information areas limited to microscopic regimes directly governed by Heisenberg uncertainty principle via quantum superposition, resulting in nondeterministic a